• Title/Summary/Keyword: Precision metrology

Search Result 115, Processing Time 0.032 seconds

Precision Nanometrology and its Applications to Precision Nanosystems

  • Gao Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.14-20
    • /
    • 2005
  • In this paper, a new field of metrology called 'precision nanometrology' is presented. The 'precision nanometrology' is the result of evolutions of the traditional 'precision metrology' and the new 'nanometrology'. 'Precision nanometrology' is defined here as the science of dimensional measurement and motion measurement with 100 nm to 0.1 nm resolution/uncertainty within a range of micrometer to meter. The definition is based on the fact that nanometrology in nanoengineering and the precision industries, such as semiconductor industry, precision machine tool industry, precision instrument industry, is not only concerned with the measurement resolution and/or uncertainty but also the range of measurement. It should also be pointed out that most of the measurement objects in nanoengineering have dimensions larger than 1 micrometer. After explaining the definition of precision nanometrology, the paper provides several examples showing the critical roles of precision nanometrology in precision nanosystems, including nanometrology system, nanofabrication system, and nanomechatronics system.

Technological Trends for Precision Optical Metrology (광계측의 기술동향)

  • 김승우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.7-16
    • /
    • 2000
  • 정밀공학에서 측정은 필수적인 의미를 갖는다. 측정할 수 없는 제품 치수는 체계적인 가공이 불가능하며, 이는 설사 가공자의 특수한 기능에 의해 가공이 되더라도 체계적인 양산방식에 의한 생산이 될 수 없음을 의미한다. 이러한 중요성을 갖는 측정기술은 가공기술의 발랄과 더불어 꾸준한 진보를 이루어 왔다.(중략)

  • PDF

A High-speed Atomic Force Microscope for Precision Measurement of Microstructured Surfaces

  • Cui, Yuguo;Arai, Yoshikazu;Asai, Takemi;Ju, BinFeng;Gao, Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.27-32
    • /
    • 2008
  • This paper describes a contact atomic force microscope (AFM) that can be used for high-speed precision measurements of microstructured surfaces. The AFM is composed of an air-bearing X stage, an air-bearing spindle with the axis of rotation in the Z direction, and an AFM probe unit. The traversing distance and maximum speed of the X stage are 300 mm and 400 mm/s, respectively. The spindle has the ability to hold a sample in a vacuum chuck with a maximum diameter of 130 mm and has a maximum rotation speed of 300 rpm. The bandwidth of the AFM probe unit in an open loop control circuit is more than 40 kHz. To achieve precision measurements of microstructured surfaces with slopes, a scanning strategy combining constant height measurements with a slope compensation technique is proposed. In this scanning strategy, the Z direction PZT actuator of the AFM probe unit is employed to compensate for the slope of the sample surface while the microstructures are scanned by the AFM probe at a constant height. The precision of such a scanning strategy is demonstrated by obtaining profile measurements of a microstructure surface at a series of scanning speeds ranging from 0.1 to 20.0 mm/s.

Atomic Force Microscope Probe Calibration by use of a Commercial Precision Balance (정밀저울을 이용한 원자힘 현미경 캔티레버의 특성평가)

  • Kim M.S.;Choi I.M.;Park Y.K.;Choi J.H.;Kim J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.637-640
    • /
    • 2005
  • In this paper, we investigate the characteristics of a piezoresistive AFM cantilever in the range of $0\~30{\mu}N$ by using nano force calibrator (NFC), which consists of a high precision balance with resolution of 1 nN and 1-D fine positioning stage. Brief modeling of the cantilever is presented and then, the calibration results are shown. Tests revealed a linear relationship between the probing force and sensor output (resistance change), and the force vs. deflection. From this relationship, the force constant of the cantilever was calculated to 3.45 N/m with a standard deviation of 0.01 N/m. It shows that there is a big difference between measured and nominal spring constant of 1 N/m provided by the manufacturer s specifications.

  • PDF

Nano Force Metrology and Standards (나노 힘 측정 및 표준)

  • Kim M.S.;Park Y.K.;Choi J.H.;Kim J.H.;Kang D.I.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.59-62
    • /
    • 2005
  • Small force measurements ranging from 1 pN to $100{\mu}N$, we call it Nano Force, become the questions of common interests of biomechanics, nanomechanics, material researches, and so on. However, unfortunately, quantitative and accurate force measurements have not been taken so far. This is because there ,are no traceable force standards and a calibration scheme. This paper introduces a quantitative force metrology, which provides traceable link to SI (International Systems of Units). We realize SI traceable force ranging from 1 nN to $100{\mu}N$ using an electrostatic balance and disseminate it through transfer standards, which are self-sensing cantilevers that have integrated piezoresistive strain gages. We have been built a prototype electrostatic balance and Nano Force Calibrator (NFC), which is an AFM cantilever calibration system. As a first experiment, we calibrated normal spring constants of commercial AFM cantilevers using NFC. Calibration results show that the spring constants of them are quite differ from each other and nominal values provided by a manufacturer (up to 240% deviation).

  • PDF

High-Performance Multimodal Flexible Tactile Sensor Capable of Measuring Pressure and Temperature Simultaneously (압력과 온도측정 기능을 갖는 고성능 플렉시블 촉각센서)

  • Jang, Jin-Seok;Kang, Tae-Hyung;Song, Han-Wook;Park, Yon-Kyu;Kim, Min-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.683-688
    • /
    • 2014
  • This paper presents a high-performance flexible tactile sensor based on inorganic silicon flexible electronics. We created 100 nm-thick semiconducting silicon ribbons equally distributed with 1 mm spacing and $8{\times}8$ arrays to sense the pressure distribution with high-sensitivity and repeatability. The organic silicon rubber substrate was used as a spring material to achieve both of mechanical flexibility and robustness. A thin copper layer was deposited and patterned on top of the pressure sensing layer to create a flexible temperature sensing layer. The fabricated tactile sensor was tested through a series of experiments. The results showed that the tactile sensor is capable of measuring pressure and temperature simultaneously and independently with high precision.