• 제목/요약/키워드: Precision forging process

검색결과 222건 처리시간 0.027초

스퍼어기어의 단조 공정에 관한 연구 (A Study on the Forging Processes of Spur Gears)

  • 최재찬;최영;김경구;탁성준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.1015-1019
    • /
    • 1997
  • In this study, the forging process of spur gears has been investigated. The forging peocess of spur gears has been classified into two type of operations, guiding one and clamping one in this investigation. Two type forgings of spur gears have been analysed by using upper bound method. The predicted values of the forging load were compared with those obtained from the forging experiments. The forging experiments were carried out with a commerial aluminium alloy. The forged parts obtained through the guiding type forging were campared with those obtained through the clamping type forging.

  • PDF

소형 가스터빈용 터빈 디스크의 형단조 공정 연구 (Study on the Closed-die Forging Process for Turbine Disk of Small Gas Turbine Engine)

  • 김동권;김영득;김동영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.427-430
    • /
    • 2007
  • Gas turbine disk components have been used by Ni-base superalloys which have high temperature strength for enduring stress induced by high speed rotation. This study introduced the overview of development strategy of precision forging of turbine disk and closed-die forging process for manufacturing good quality gas turbine disk. To make superior quality turbine disk, it is important to select optimal forging process conditions like preform shape, die shape and forging temperature etc. In this paper, closed-die forging process has been studied through the rigid-plastic finite element simulation. Proposed forging process can be used for the successful manufacturing of small-size gas turbine disk.

  • PDF

윤활제 및 표면 거칠기에 따른 베벨기어의 온간단조 성형성 평가 (Evaluation of Formability for Warm Forging of The Bevel Gear on The Lubricants and Surface Roughness)

  • 김동환;김병민
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.21-28
    • /
    • 2005
  • In the hot forging process lubricant influences on frictional condition only, but in the warm forging process it influence on the formability such as dimensional accuracy, filling state and frictional condition and it is important to estimate a lubricating characteristic of lubricants in the warm forging. In this paper, in order to evaluate the formability of billet in warm forging process according to the lubricant and lubricating method, lubricant and lubricating test have been performed using oil-based and water-based lubricant which were widely used in the hot and warm forging processes. The surface roughness of initial billet was measured to evaluate the influence on the formability of billet and the forming load and dimensional accuracy were compared and evaluated. From the experimental results, it can be known that water-based lubricants are more excellent than oil-based lubricants for warm forging of complex shape like a bevel gear. Also, in this study characteristics of deformation have been investigated according to surface treatment of initial billet.

국부 요소망재구성 기법을 이용한 정밀 단조시뮬레이션 (Precise Forging Simulation by a Local Remeshing Technique)

  • 류찬호;박재민;전만수
    • 한국정밀공학회지
    • /
    • 제17권10호
    • /
    • pp.180-185
    • /
    • 2000
  • In this paper, a local remeshing technique assisted by flexible user-interface capabilities is presented for precise forging simulation. The rigid-plastic finite element formulation is introduced and the detailed approach to the new local remeshing technique is given. A piercing process in cold forging is simulated by the presented technique and the simulated results are compared with those obtained by the technique and the simulated results are compared with those obtained by the conventional approach and experiments. A typical application example is also given, which emphasizes the capability of the local remeshing technique in forging simulation.

  • PDF

복합단조 공정의 유한요소해석 (Finite Element Analysis of Compound Forging Processes)

  • 전만수;문호근;이민철;서대윤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.546-550
    • /
    • 1996
  • A fully automatic computer simulation technique of axisymmetric multi-stage compound forging processes was presented in this paper. A penalty rigid-viscoplastic finite element method was employed together with an improved looping method for automatically remeshing with quadrilateral finite-elements only. An application example of six-stage axisymmetric forging processes involving one cold and two hot forging processes, two piercing processes and a sizing process was given with emphasis on automatically tracing the metal flow lines through the whole simulation.

  • PDF

일체형 중공 드라이브 샤프트 제작을 위한 점진적 열간 로터리 단조 공정 조건 예측 (Estimation of Conditions of Incremental Hot Rotary Forging Process for Monobloc Tubular Drive Shaft)

  • 이호진;국대선;안동규;정종훈;설상석
    • 한국정밀공학회지
    • /
    • 제33권4호
    • /
    • pp.287-293
    • /
    • 2016
  • A monobloc tubular drive shaft is designed to obtain the improved structural safety and the weight reduction of the drive shaft together. The monobloc tubular drive shaft can be manufactured from an incremental hot rotary forging process. The aim of this study was to experimentally determine conditions of an incremental hot rotary forging process for a monobloc tubular drive shaft. Induction heating experiments were performed to estimate a proper heating time of an initial workpiece in an induction heating process. Several incremental hot rotary forging experiments were carried out using a mechanical press with the designed set-up. The step distance and the step angle were chosen as controllable forming parameters. Based on the results of the experiments, the influence of forming parameters on the quality of the forged part was investigated. Finally, a forming map and a proper forming condition of the incremental hot rotary forging process were estimated.

알루미늄 합금 볼트의 제조 공정 설계 (Manufacturing Process Design of Aluminum Alloy Bolt)

  • 김지환;채수원;한승상;손요헌
    • 한국정밀공학회지
    • /
    • 제27권5호
    • /
    • pp.63-68
    • /
    • 2010
  • The use of aluminum alloy parts in the automotive industry has been increasing recently due to its low weight compared with steel to improve fuel efficiency. Companies in the auto parts' manufacturing sector are expected to meet the government's strict environmental regulations. In this study, manufacturing process of aluminum alloy bolt has been designed from forming to heat treatment. Bolt forming process is composed of cold forging for body and rolling for thread. In this study only cold forging process is considered by employing the finite element method. In the cold forging process, preform shape was designed and damage value was considered for die design. Two steps of forging process has been developed by the simulation and a prototype was manugactured accordingly. As a final process, solution heat treatment and aging process was employed. A final prototype was found to meet the required specifications of tensile strength and dimension.