• Title/Summary/Keyword: Precision Tracking Control

Search Result 333, Processing Time 0.025 seconds

A Study on Development of Automatic Path Tracking Algorithm for LNG Aluminium Plate and Selection of Process Parameters by Using Artificial Intelligence (LNG 알루미늄 판재 가공용 자동 궤적 추적 알고리즘 개발 및 인공지능을 이용한 공정조건 선정에 관한 연구)

  • 문형순;권봉재;정문영;신상룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.17-25
    • /
    • 1998
  • Aluminum alloys have low density, relatively high strength and yield strength, good plasticity, good machinability, and high corrosion and acid resistance. Therefore, they are suitable for large containers for the food, chemical and other industries. Large containers are often bodies of revolution consisting of shell courses, stiffening rings, heads and other elements joined by annular welds. Larger containers have longer welds and require greater leak-tightness and higher weld mechanical properties. The LNG tank consists of aluminum plates with various sizes, so its construction should by divided by several sections. Moreover, each section has its own sub-section consisted of several aluminum plates. To guarantee the quality of huge LNG tank, therefore, the precise control of plate dimension should by urgently needed in conjunction with the appropriate selection of process parameters such as cutting speed, depth of cut, rotational speed and so on. In this paper, a manufacturing system was developed to implement automatic circular tracking in height direction and automatic circular interpolation in depth of cut direction. Also, the neural network based on the backpropagation algorithm was used to predict the cutting quality and motor load related with the life time of the developed system. It was revealed that the manufacturing system and the neural network could be effectively applied to the bevelling process and to predict the quality of machined area and the motor load.

  • PDF

Development of Inverse Dynamic Controller for Industrial robots with HyRoHILS system

  • Yeon, Je-Sung;Kim, Eui-Jin;Lee, Sang-Hun;Park, Jong-Hyeon;Hur, Jong-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1972-1977
    • /
    • 2005
  • In this work, an inverse dynamic control method is developed to enhance tracking performance of industrial robots, which effectively deal with the nonlinear dynamic interferential forces. In general, the DFF (Dynamic Feed-Forward) controller and the CTM (Computed-Torque Method) controller are used for dynamic control for industrial robots. We study on the practical issues for implementing these inverse dynamic controllers via simulations and experiments. We develop the dynamic models in two different ways. One is a model designed through Newton-Euler method for real time computation and the other is a model designed through SimMechanics for evaluating the developed controller via simulations. We evaluate the nominal performance and robustness of the controller via simulations and experiments using serial 4-DOF HyRoHILS (Hyundai Robot Hardware-In-the-Loop Simulation) system. The results show that the inverse dynamic controller is effective and practically useful for a real control structure.

  • PDF

High Speed and High Precision Control of Linear Voice Coil Motor for Optical Disc (광 저장장치용 리니어 보이스 코일 모터의 고속, 고정밀 위치제어)

  • Kim, Se-Woong;Jun, Hong-Gul;Park, No-Chul;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.754-758
    • /
    • 2000
  • In recent years, the LDM(Linear DC Motor) is widely used, because it has more merits than other rotary motors. First, if system requires linear motion, LDM realizes direct linear motion as rotary motor does not. Second, system is simple and easy to control, and so on. In optical disc drive, a tracking system consists of two parts. One is fine actuating and the other is coarse actuating. For coarse actuating VCM(Voice Coil Motor) actuator is used as a basic drive mechanism. In this paper, MC(Moving Coil) type LDM is designed, manufactured and controlled. System is composed of mechanical-electromagnetic component, therefore mechanical loss and electromagnetic loss exist. The dominent mechanical loss is friction which results from sliding between guide shaft and hole. Therefore, this paper shows the friction compensation control. High speed and accurate position is not gained only PID control, therefore other control method is applied to the system.

  • PDF

Design of Maneuvering Target Tracking System Using Data Fusion Capability of Neural Networks (신경망의 자료 융합 능력을 이용한 기동 표적 추적 시스템의 설계)

  • Kim, Haeng-Koo;Jin, Seung-Hee;Yoon, Tae-Sung;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.552-554
    • /
    • 1998
  • In target tracking problems the fixed gain Kalman filter is primarily used to predict a target state vector. This filter, however, has a poor precision for maneuvering targets while it has a good performance for non-maneuvering targets. To overcome the problem this paper proposes the system which estimates the acceleration with neural networks using the input estimation technique. The ability to efficiently fuse information of different forms is one of the major capabilities of trained multi-layer neural networks. The primary motivation for employing neural networks in these applications comes from the efficiency with which more features can be utilized as inputs for estimating target maneuvers. The parallel processing capability of a properly trained neural network can permit fast processing of features to yield correct acceleration estimates. The features used as inputs can be extracted from the combinations of innovation data and heading changes, and for this we set the two dimensional model. The properly trained neural network system outputs the acceleration estimates and compensates for the primary Kalman filter. Finally the proposed system shows the optimum performance.

  • PDF

A High Performance Permanent Magnet Synchronous Motor Servo System Using Predictive Functional Control and Kalman Filter

  • Wang, Shuang;Zhu, Wenju;Shi, Jian;Ji, Hua;Huang, Surong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1547-1558
    • /
    • 2015
  • A predictive functional control (PFC) scheme for permanent magnet synchronous motor (PMSM) servo systems is proposed in this paper. The PFC-based method is first introduced in the control design of speed loop. Since the accuracy of the PFC model is influenced by external disturbances and speed detection quantization errors of the low distinguishability optical encoder in servo systems, it is noted that the standard PFC method does not achieve satisfactory results in the presence of strong disturbances. This paper adopted the Kalman filter to observe the load torque, the rotor position and the rotor angular velocity under the condition of a limited precision encoder. The observations are then fed back into PFC model to rebuild it when considering the influence of perturbation. Therefore, an improved PFC method, called the PFC+Kalman filter method, is presented, and a high performance PMSM servo system was achieved. The validity of the proposed controller was tested via experiments. Excellent results were obtained with respect to the speed trajectory tracking, stability, and disturbance rejection.

Improvement of Dynamic Characteristic of Large-Areal Planar Stage Using Induction Principle (인덕션 방식을 이용한 평면 스테이지의 동특성 개선)

  • Jung, Kwang-Suk;Park, Jun-Kyu;Kim, Hyo-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.675-682
    • /
    • 2009
  • Instead of direct driving like BLDC, the induction principle is adopted as a driving one for planar stage. The stage composed of four linear induction motors put in square type is activated by two-axial forces; low-frequency attractive force and thrust force of the linear induction motors. Here, the modified vector control whose new inputs are q-axis current and dc current biased to three phase current instead of d-axis current or flux current is applied extensively to overall motion of the stage. For the developed system, the precision step test and the constant velocity test are tried to guarantee its feasibility for TFT-LCD pattern inspection. However, to exclude a discontinuity due to phase shift and minimize a force ripple synchronized with the command frequency, the initial system is revised to the antagonistic structure over the full degree of freedom. Concretely describing, the porous air bearings guide an air-gapping of the stage up and down and a pair of liner induction motors instead of single motor are activated in the opposite direction each other. The performances of the above systems are compared from trapezoid tracking test and sinusoidal test.

A study on the Adaptive Variable Structure Controller with Nonlinear Switching Surfaces (비선형 스위칭 평면을 가지는 적응가변구조 제어기 설계)

  • Park, Soo-Sik;Lee, Dae-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.52-54
    • /
    • 1996
  • A number of algorithm using the VSS(Variable Structure System) for uncertain dynamic system are developed. But, in these algorithms, the assumption that the uncertainties are bounded and their bounds are available to the designer is involved. And bounds on the uncertainties are an important clue to guarantee the stability of the closed loop system. However, sometimes bounds on the uncertainties may not be easily obtained because of the complexity of the structure of the uncertainties. Therefore, a methodology by which the boundary values on the uncertainties can be easily obtained is required. The VSS proposed in this proposal employ the new adaptive VSS scheme for uncertain dynamic system being estimated on line. The resulting control law is simple and easy to apply to on line computer control. It can also suppress chattering and maintain good tracking precision even if unmodeled dynamics are considered. And, a new method using nonlinear switching surface is introduced so that the speed response is improved and the good transient response can be obtained. Simulation results are presented and show the advantage of the proposed adaptive VSS with nonlinear switching surfaces.

  • PDF

Empirical Evaluation of Tidal Current Generation System at Ul-Dol-Mok in Jin-do (진도 울돌목 조류발전 시스템 실증 평가)

  • Moon, Seok-Hwan;Park, Byung-Gun;Kim, Ji-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.157-163
    • /
    • 2016
  • The empirical evaluation of grid-connected tidal current generation system is presented in this paper. The Ul-dol-mok in Jin-do has been estimated to have tidal power of 1GW. In order to experiment, HAT (Horizontal Axis Turbine) 3-blade and 20kW grid-connected tidal current generation system was established at Ul-dol-mok in Jin-do. To generate power of generator, the speed reference of the PMSG is generated from the Cp curve and TSR (Tip Speed Ratio) of the designed turbine. The control of the converter connected to the grid is controlled to regulate unity power factor. The result showed that the turbine efficiency and system efficiency is 37 % and 31 %. This was achieved that target rate is 30 %, 20 %, respectively.

A Path Generation Algorithm of Autonomous Robot Vehicle By the Sensor Platform and Optimal Controller Based On the Kinematic Model

  • Park, Tong-Jin;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.399-399
    • /
    • 2000
  • In this paper, path generation using the sensor platform is proposed. The sensor platform is composed two electric motors which make panning and tilting motions. An algorithm fur a real path form and an obstacle length is realized using a scanning algorithm to rotating the sensors on the sensor platform. An ARV (Autonomous Robot Vehicle) is able to recognize the given path by adapting this algorithm. In order for the ARV to navigate the path flexibly, a kinematic model needed to be constructed. The kinematic model of the ARV was reformed around its body center through a relative velocity relationship to controllability, which derives from the nonholonomic characteristics. The optimal controller that is based on tile kinematic model is operated purposefully to track a reference vehicle's path. The path generation algorithm is composed of two parks. On e part is the generating path pattern, and the other is used to avoid an obstacle. The optimal controller is used for tracking the reference path which is generated by recognizing the path pattern. Results of simulation show that this algorithm for an ARV is sufficient for path generation by small number of sensors and for low cost controller.

  • PDF

Take-Over Time Determination for High-Velocity Targets in a Multiple Radar System (다중 레이다 시스템의 고속표적 인계 시점 결정기법 연구)

  • Park, Soon-Seo;Jang, Dae-Sung;Choi, Han-Lim;Kim, Eun-Hee;Sun, Woong;Lee, Jong-Hyun;Yoo, Dong-Gil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.307-316
    • /
    • 2016
  • A multiple radar system is comprised of early warning radar for fast detection of a target and air defense radar for precision intercept. For this reason, target take-over process is required between the two radars. The target take-over should be performed at an appropriate time by consideration of stable tracking and effective fire control. In this paper, operation characteristics of multiple radar system are analyzed and target take-over time determination method using estimation of target tracking performance is proposed for high-velocity targets. The proposed method is validated with ballistic target defense scenarios in the developed integrated simulator.