• Title/Summary/Keyword: Precision Geoid

Search Result 25, Processing Time 0.021 seconds

The Precision Geoid Development based on Various Gravity Data (다양한 중력자료를 이용한 우리나라 정밀 지오이드 모델 개발)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Keun, Young-Min
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.35-37
    • /
    • 2010
  • To construct precision geoid model, the gravity data having equal distribution and quality is necessary. In previous study, however, the geoid model has low precision since the biased distributed gravity data and some unverified data has been used and the gap between land and ocean exists. Now, the airborne and land gravity data was collected by various survey and the ship-borne gravity data and altimeter data has been achieved. Therefore, the precision geoid model development would be possible. And the GPS/Leveling data obtained by NGII could be used for construction of hybrid geoid in Korea. In this study, the procedure of geoid construction based on airborne, land, ship-borne and altimeter data using Remove-Restore technique will be explained. And the verification of gravimetric geoid and hybrid geoid would be introduced.

  • PDF

Development of High-Precision Hybrid Geoid Model in Korea (한국의 고정밀 합성지오이드 모델 개발)

  • Lee, Dong-Ha;Yun, Hong-Sik
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.429-431
    • /
    • 2010
  • The hybrid geoid model should be determined by fitting the gravimetric geoid to the geometric geoid which were presented the local vertical level. Therefore, it is necessary to find firstly the optimal scheme for improving the accuracy of gravimetric geoid in order to development the high-precision hybrid geoid model. Through finding the optimal scheme for determining the each part of gravimetric geoid, the most accurate gravimetric geoid model in Korea will be developed when the EIGEN-CG03C model to degree 360, 4-band spherical FFT and RTM reduction methods were used for determining the long, middle and short-frequency part of gravimetric geoid respectively. Finally, we developed the hybrid geoid model around Korea by correcting to gravimetric geoid with the correction term. The correction term is modelled using the difference between GPS/Levelling derived geoidal heights and gravimetric geoidal heights. The stochastic model used in the calculation of correction term is the LSC technique based on second-order Markov covariance function. 503 GPS/Levelling data were used to model the correction term. The degree of LSC fitting to the final hybrid geoid model in Korea was evaluated as 0.001m ${\pm}0.054m$.

  • PDF

An Analysis of DEM and Gravity Effect for Precision Geoid Determination in Korea (우리나라 정밀지오이드 구축을 위한 지형자료 및 중력자료 영향 분석)

  • Lee, Bo-Mi;Lee, Ji-Sun;Kwon, Jay-Hyoun;Lee, Yong-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.519-527
    • /
    • 2008
  • The basic elements in precise geoid determination are the gravity and topographic data with reliable quality and distribution. In this study, the effect of the gravity and topographic data on the precision of the geoid are analyzed through simulations in which the quality and distribution of the data are artificially controlled. It was found that the distribution of the topographic data has more effect on the precision of geoid than the quality of the it. This leads to the conclusion that the SRTM (Shuttle Radar Topography Mission) DTM (Digital Terrain Model) with resolution of 90m is qualified as a topographic data in geoid determination. In the experiments with gravity data, on the other hand, the aliasing effect caused by the low data density caused large errors in geoid. It was found that the more gravity data especially in north-eastern mountainous area is needed for precise geoid determination in Korea.

The Update of Korean Geoid Model based on Newly Obtained Gravity Data (최신 중력 자료의 획득을 통한 우리나라 지오이드 모델 업데이트)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Keum, Young-Min;Moon, Ji-Yeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.1
    • /
    • pp.81-89
    • /
    • 2011
  • The previous land gravity data in Korea showed locally biased irregular distribution. Especially, this problem was more serious in the mountainous area where the data density was significantly low. The same problem appeared in GPS/Levelling data thus the precision of the geoid could not be improved. From 2008, new gravity and GPS/Levelling data has been collected by the unified control point and survey on the benchmark project which were funded by the national geographic information institute. The newly obtained data has much better distribution and precision so that it could be used for update precision of geoid model. In this study, the new precision geoid has been calculated based old and new gravity data and this model showed 5.29cm of precision compared to 927 points of GPS/Levelling data. And the degree of fit and precision of hybrid geoid has been calculated 2.99cm and 3.67cm. The new gravimetric geoid has been updated about 27% over whole country. And it showed 42% of precision update due to collection of new gravity data on the Kangwon/Kyeongsang area which showed quite low distribution. In 2010, about 4,000 points of gravity and 300 points of GPS/Levelling data has been obtained by unified control and survey on benchmark project. We expect that new data will contribute to updating geoid precision and veri tying precision more objectively.

Development of Korean Geoid Model and Verification of its Precision (우리나라 지오이드 모델 구축 및 정밀도 검증)

  • Lee, Jisun;Kwon, Jay Hyoun;Baek, Kyeong Min;Moon, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.5
    • /
    • pp.493-500
    • /
    • 2012
  • The previous geoid model developed in early 2000s shows 14cm level of precision due to the problems on distribution, and quality of the land gravity and GPS/Leveling data. From 2007, the new land and airborne gravity data as well as GPS/Leveling data having high quality and regular distribution has been obtained. In 2011, a new gravimetric geoid model has been constructed with precision of 5.29cm which was improved about 27% comparing to the previous model. However, much more land gravity data has been collected at the control point, bench marks and triangulation points since 2010. Also, GPS/Leveling data having 10km spacing over whole country has been obtained through the project which is for the construction of new control points. In this study, new gravimetric geoid has been calculated based on the all available gravity data up to present. The geoid height shows the range from 18.05m to 32.70m over whole country and its precision is 5.76cm. The degree of fit and precision of hybrid geoid model are 3.60cm and 4.06cm, respectively. At the end, 3.35cm of the relative precision in 15km baseline has been calculated to confirm its practical usage. Especially, it has been founded that regional bias occurred at the Kangwon and coastal area due to problems on the leveling data. Also, some inland points show inconsistent large difference which needs to be verified by analyzing the unified control points results.

Determination of the Optimal Parameters in Data Processing for the Precision Geoid Construction (정밀 지오이드 구축을 위한 자료처리의 최적 변수 결정)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.397-404
    • /
    • 2009
  • To solve the problems of distribution and quality on land gravity data, airborne gravity survey was performed in 2008 obtaining the airborne gravity data with accuracy of 1.56mGal. Since airborne gravity data is the obtained at the flight height, it is necessary to convert the airborne gravity data to the surface to combine various gravity data and compute precision geoid. In addition, Stokes' integral radius, Stokes' kernel and the radius of terrain effect computation should be optimally determined to calculate precision geoid. In this study, we made an effort to decide the optimal parameters based on the distribution and the characteristic of gravity data. Then, two geoid models were calculated using the selected parameters and the difference of geoid was calculated with mean of -16.95cm and the standard deviation of ${\pm}8.50cm$. We consider that this difference is due to the distribution and errors on the gravity data. For future work, the study on the effect of geoid with newly obtained land gravity data ship-borne gravity data and GPS/Leveling data should be conducted. Furthermore, the study on the downward continuation and terran effect calculation should be studied in detail for better precision geoid construction.

  • PDF

Geoid Determination in South Korea from a Combination of Terrestrial and Airborne Gravity Anomaly Data

  • Jekeli, Christopher;Yang, Hyo Jin;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.567-576
    • /
    • 2013
  • The determination of the geoid in South Korea is a national imperative for the modernization of height datums, specifically the orthometric height and the dynamic height, that are used to monitor hydrological systems and environments with accuracy and easy revision, if necessary. The geometric heights above a reference ellipsoid, routinely obtained by GPS, lead immediately to vertical control with respect to the geoid for hydrological purposes if the geoid height above the ellipsoid is known accurately. The geoid height is determined from gravimetric data, traditionally ground data, but in recent times also from airborne data. This paper illustrates the basic concepts for combining these two types of data and gives a preliminary performance assessment of either set or their combination for the determination of the geoid in South Korea. It is shown that the most critical aspect of the combination is the gravitational effect of the topographic masses above the geoid, which, if not properly taken into account, introduces a significant bias of about 8 mgal in the gravity anomalies, and which can lead to geoid height bias errors of up to 10 cm. It is further confirmed and concluded that achieving better than 5 cm precision in geoid heights from gravimetry remains a challenge that can be surmounted only with the proper combination of terrestrial and airborne data, thus realizing higher data resolution over most of South Korea than currently available solely from the airborne data.

Determination of complementary surveying area for precise geoid development in Korea (정밀지오이드 구축을 위한 보완측정지역 선정)

  • Lee, Bo-Mi;Lee, Ji-Sun;Kwon, Jay-Hyoun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2009.04a
    • /
    • pp.35-39
    • /
    • 2009
  • The equal distribution of the gravity as well as the topographic data is an essential factor in the precision geoid determination. In this study, the area where needs the supplementary gravity survey is assigned through a simulation to build the 5cm level geoid. Based on the current distribution of the gravity data which results in the 8cm level of the precision over all, we extract the area which shows the errors larger than 30 cm. Then, the area is assumed to be filled with gravity data with 2km interval which is turned out to be successfully improving the overall accuracy up to 5cm. Therefore, it is recommended that the supplementary gravity survey should be conducted in mountainous area such as eastern and mid-northern part of Kangwon-Do to achieve the 5cm accuracy on the geoid.

  • PDF

Construction of the Airborne Gravity Based Geoid and its Evaluation (항공중력기반 지오이드 모델 구축 및 검증)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Lee, Bo-Mi;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.159-167
    • /
    • 2009
  • To obtain the gravity data with consistent quality and good distribution over Korea, to overcome the difficulties in constructing precision geoid from biased distribution of ground data, to resolve the discrepancy between the ground and ocean gravity data, an airborne gravity survey was conducted from Dec. 2008 to Jan. 2009. The data was measured at the average flying height of 3,000m and the data with cross-over error of 2.21mGal is obtained. The geoid constructed using this airborne gravity data shows the range of 9.34 $\sim$ 33.88m. Comparing the geoid with respect to the GPS/levelling data, a precision of 0.145m is obtained. After fitting, the degree of fit to GPS/levelling data was calculated about 5cm. It was found that there exists large biases in the area of south-western and northern part of the peninsular which is considered to be the effect of distorted vertical datum in Korea. Thus, more investigation on vertical datum would be needed in near future.

Determination of Local Vortical in Celestial Navigation Systems (천측 항법 시스템의 수직 방향 결정)

  • Suk, Byong-Suk;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.72-78
    • /
    • 2007
  • Determination of the local vertical is not trivial for a moving vehicle and in general will require corrections for the Earth geophysical deflection. The vehicle's local vertical can be estimated by INS integration with initial alignment in SDINS(Strap Down INS) system. In general, the INS has drift error and it cause the performance degradation. In order to compensate the drift error, GPS/INS augmented system is widely used. And in the event that GPS is denied or unavailable, celestial navigation using star tracker can be a backup navigation system especially for the military purpose. In this celestial navigation system, the vehicle's position determination can be achieved using more than two star trackers, and the accuracy of position highly depends on accuracy of local vertical direction. Modern tilt sensors or accelerometers are sensitive to the direction of gravity to arc second(or better) precision. The local gravity provides the direction orthogonal to the geoid and, appropriately corrected, toward the center of the Earth. In this paper the relationship between direction of center of the Earth and actual gravity direction caused by geophysical deflection was analyzed by using precision orbit simulation program embedded the JGM-3 geoid model. And the result was verified and evaluated with mathematical gravity vector model derived from gravitational potential of the Earth. And also for application purpose, the performance variation of pure INS navigation system was analyzed by applying precise gravity model.