• Title/Summary/Keyword: Precision Correction

Search Result 321, Processing Time 0.025 seconds

An Implementation of Smart E-Calipers for Mobile Phones (모바일 폰을 이용한 스마트 E-캘리퍼스 구현)

  • Yun, Han-Kyung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.331-337
    • /
    • 2020
  • The study is underway with the goal of developing an app that will replace vernier calipers using a smartphone's high-performance camera. The specifications of the camera mounted on recent smart phones have evolved so that usually has a 12 Mpixels of image sensor and its size of the pixel is 1.4㎛ and the size of the image sensor is 1 / 2.55 in. The proposed algorithm will apply to develop a precision measuring application that will compete with the Vernier calipers. Most existing applications cannot guarantee an accuracy in scale because the scale of the ruler displayed on the image is unclear or the size of the measurement object varies depending on the distance between the camera and the measurement object. In addition, another accurate measuring tools using lasers are also available, but they are limited because they are expensive. Therefore, if easy-to-carry and precise applications are developed, it is possible to substitute existing measurement tools. The proposed correction algorithm is an algorithm that automatically corrects the distorted source image using the shape and size information of the known template. The e-calipers are applications that display the distance when the area to be measured is specified in the corrected image.

Performance Analysis of Vision-based Positioning Assistance Algorithm (비전 기반 측위 보조 알고리즘의 성능 분석)

  • Park, Jong Soo;Lee, Yong;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.101-108
    • /
    • 2019
  • Due to recent improvements in computer processing speed and image processing technology, researches are being actively carried out to combine information from camera with existing GNSS (Global Navigation Satellite System) and dead reckoning. In this study, developed a vision-based positioning assistant algorithm to estimate the distance to the object from stereo images. In addition, GNSS/on-board vehicle sensor/vision based positioning algorithm is developed by combining vision based positioning algorithm with existing positioning algorithm. For the performance analysis, the velocity calculated from the actual driving test was used for the navigation solution correction, simulation tests were performed to analyse the effects of velocity precision. As a result of analysis, it is confirmed that about 4% of position accuracy is improved when vision information is added compared to existing GNSS/on-board based positioning algorithm.

An Analysis of the Attitude Estimation Errors Caused by the Deflection of Vertical in the Initial Alignment (초기정렬에서 수직편향으로 인한 자세 추정 오차 분석)

  • Kim, Hyun-seok;Park, Chan-sik
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.235-243
    • /
    • 2022
  • In this paper, in the case of an inertial navigation system, the posture estimation error in the initial alignment due to vertical deflection is analyzed. Posture estimation error due to DOV was theoretically analyzed based on the speed and posture error of INS. Simulations were performed to verify the theoretical grinding, and the results were in good agreement. For example, in the case of η=20", an alignment error of ϕN=0.00287°, ϕU=0.00196° occurred, and in the case of 𝜉=20", an error of ϕE= -0.00286° occurred. Through this, it was confirmed that the vertical posture error caused by the DOV occurred as a coupling characteristic of the INS posture error. It has been shown that an additional posture error may occur due to the DOV, which was not considered in the existing INS alignment, which means that correction for the DOV must be considered when applying high-precision INS.

Development of Motion Recognition and Real-time Positioning Technology for Radiotherapy Patients Using Depth Camera and YOLOAddSeg Algorithm (뎁스카메라와 YOLOAddSeg 알고리즘을 이용한 방사선치료환자 미세동작인식 및 실시간 위치보정기술 개발)

  • Ki Yong Park;Gyu Ha Ryu
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • The development of AI systems for radiation therapy is important to improve the accuracy, effectiveness, and safety of cancer treatment. The current system has the disadvantage of monitoring patients using CCTV, which can cause errors and mistakes in the treatment process, which can lead to misalignment of radiation. Developed the PMRP system, an AI automation system that uses depth cameras to measure patient's fine movements, segment patient's body into parts, align Z values of depth cameras with Z values, and transmit measured feedback to positioning devices in real time, monitoring errors and treatments. The need for such a system began because the CCTV visual monitoring system could not detect fine movements, Z-direction movements, and body part movements, hindering improvement of radiation therapy performance and increasing the risk of side effects in normal tissues. This study could provide the development of a field of radiotherapy that lags in many parts of the world, along with the economic and social importance of developing an independent platform for radiotherapy devices. This study verified its effectiveness and efficiency with data through phantom experiments, and future studies aim to help improve treatment performance by improving the posture correction mechanism and correcting left and right up and down movements in real time.

Assessment of Atmospheric Greenhouse Gas Concentration Equipment Performance (대기 중 온실가스 농도 관측 장비 성능 비교 검증)

  • Chaerin Park;Sujong Jeong;Seung-Hyun Jeong;Jeong-il Lee;Insun Kim;Cheol-Soo Lim
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.549-560
    • /
    • 2023
  • This study evaluates three distinct observation methods, CRDS, OA-ICOS, and OF-CEAS, in greenhouse gas monitoring equipment for atmospheric CO2 and CH4 concentrations. The assessment encompasses fundamental performance, high-concentration measurement accuracy, calibration methods, and the impact of atmospheric humidity on measurement accuracy. Results indicate that within a range of approximately 500 ppm, all three devices demonstrate high accuracy and linearity. However, beyond 1000 ppm, CO2 accuracy sharply declines (84%), emphasizing the need for caution when interpreting high-concentration CO2 data. An analysis of calibration methods reveals that both CO2 and CH4 measurements achieve high accuracy and linearity through 1-point calibration, suggesting that multi-point calibration is not imperative for precision. In dynamic atmospheric conditions with significant CO2 and CH4 concentration variations, a 1-point calibration suffices for reliable data (99% accuracy). The evaluation of humidity impact demonstrates that humidity removal devices significantly reduce air moisture levels, yet this has a negligible effect on dry CO2 concentrations (less than 0.5% relative error). All three observation method instruments, which have integrated humidity correction to calculate dry CO2 concentrations, exhibit minor sensitivity to humidity removal devices, implying that additional removal devices may not be essential. Consequently, this study offers valuable insights for comparing data from different measurement devices and provides crucial information to consider in the operation of monitoring sites.

Evaluating applicability of metal artifact reduction algorithm for head & neck radiation treatment planning CT (Metal artifact reduction algorithm의 두경부 CT에 대한 적용 가능성 평가)

  • Son, Sang Jun;Park, Jang Pil;Kim, Min Jeong;Yoo, Suk Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.107-114
    • /
    • 2014
  • Purpose : The purpose of this study is evaluation for the applicability of O-MAR(Metal artifact Reduction for Orthopedic Implants)(ver. 3.6.0, Philips, Netherlands) in head & neck radiation treatment planning CT with metal artifact created by dental implant. Materials and Methods : All of the in this study's CT images were scanned by Brilliance Big Bore CT(Philips, Netherlands) at 120kVp, 2mm sliced and Metal artifact reduced by O-MAR. To compare the original and reconstructed CT images worked on RTPS(Eclipse ver 10.0.42, Varian, USA). In order to test the basic performance of the O-MAR, The phantom was made to create metal artifact by dental implant and other phantoms used for without artifact images. To measure a difference of HU in with artifact images and without artifact images, homogeneous phantom and inhomogeneous phantoms were used with cerrobend rods. Each of images were compared a difference of HU in ROIs. And also, 1 case of patient's original CT image applied O-MAR and density corrected CT were evaluated for dose distributions with SNC Patient(Sun Nuclear Co., USA). Results : In cases of head&neck phantom, the difference of dose distibution is appeared 99.8% gamma passing rate(criteria 2 mm / 2%) between original and CT images applied O-MAR. And 98.5% appeared in patient case, among original CT, O-MAR and density corrected CT. The difference of total dose distribution is less than 2% that appeared both phantom and patient case study. Though the dose deviations are little, there are still matters to discuss that the dose deviations are concentrated so locally. In this study, The quality of all images applied O-MAR was improved. Unexpectedly, Increase of max. HU was founded in air cavity of the O-MAR images compare to cavity of the original images and wrong corrections were appeared, too. Conclusion : The result of study assuming restrained case of O-MAR adapted to near skin and low density area, it appeared image distortion and artifact correction simultaneously. In O-MAR CT, air cavity area even turned tissue HU by wrong correction was founded, too. Consequentially, It seems O-MAR algorithm is not perfect to distinguish air cavity and photon starvation artifact. Nevertheless, the differences of HU and dose distribution are not a huge that is not suitable for clinical use. And there are more advantages in clinic for improved quality of CT images and DRRs, precision of contouring OARs or tumors and correcting artifact area. So original and O-MAR CT must be used together in clinic for more accurate treatment plan.

The Effect of Wireless Channel Models on the Performance of Sensor Networks (채널 모델링 방법에 따른 센서 네트워크 성능 변화)

  • 안종석;한상섭;김지훈
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.4
    • /
    • pp.375-383
    • /
    • 2004
  • As wireless mobile networks have been widely adopted due to their convenience for deployment, the research for improving their performance has been actively conducted. Since their throughput is restrained by the packet corruption rate not by congestion as in wired networks, however, network simulations for performance evaluation need to select the appropriate wireless channel model representing the behavior of propagation errors for the evaluated channel. The selection of the right model should depend on various factors such as the adopted frequency band, the level of signal power, the existence of obstacles against signal propagation, the sensitivity of protocols to bit errors, and etc. This paper analyzes 10-day bit traces collected from real sensor channels exhibiting the high bit error rate to determine a suitable sensor channel model. For selection, it also evaluates the performance of two error recovery algorithms such as a link layer FEC algorithm and three TCPs (Tahoe, Reno, and Vegas) over several channel models. The comparison analysis shows that CM(Chaotic Map) model predicts 3-time less BER variance and 10-time larger PER(Packet Error Rate) than traces while these differences between the other models and traces are larger than 10-time. The simulation experiments, furthermore, prove that CM model evaluates the performance of these algorithms over sensor channels with the precision at least 10-time more accurate than any other models.

A STUDY ON THE ERRORS UN THE CEPHALOMETRIC MEASUREMENTS (두부방사선사진의 계측오류에 관한 연구)

  • Na, Kwang-Cheon;Yoon, Young-Jooh;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.75-83
    • /
    • 1998
  • This study was done to recognize the importance of errors in measurements of cephalometric radiograph and to find the anatomical structures those need special care to select as a reference points through the detection of the systematic errors and estimation of random errors. For this purose, 100 cephalometric radiographs were prepared by usual manner and 61 reference points, and 130 measurement variables were established. Measurement errors were detected and estimated by the comparison of the 25 randomly-selected samples for repeated measurements with the main sample. The following results were obtained : 1. In comparison of the repeated measurements, there were statistical significant differences in 24 variables which were 18.4% of 130 total variables. 2. The frequency of the difference in identification of the reference points between the repeated measurements was very high in the root apex of upper incisor(as), the most posterior wall of maxilla(tu), soft tissue nasion(n'), soft tissue frontal eminence(ft), and ad3 in airway. 3. After correction of reference points marking until the level of below 5% significance, the range of random errors were from 0.67 to 1.71 degree or mm. 4. The variable shown the largest random error was the interincisal angle(ILs-ILi). 5. Measurement errors were mainly caused by the lack of precision in anatomic definitions and obscure radiographic image. From the above results, the author could find the high possibility of errors in cephalometric measurements and from this point, we should include error analysis in all the studies concerning measurments. In is essential to have a concept of error analysis not only for the investigator but also for a reader of other articles.

  • PDF

Development of Biotelemetry Method by Combining the SSBL Method and the Pinger Synchronizing Method (1) - Design and production of system - (SSBL 방식과 핑거동기 방식을 조합한 바이오텔레메터리 방식의 개발 (1) -시스템의 설계 및 제작 -)

  • 박주삼;고탁창언
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.218-229
    • /
    • 2003
  • A new biotelemetry method that the installation and the treatment of equipment is convenient and the instantaneously detailed location of the fish attached the pinger is able to track comparatively easily was developed. The receiving system in this biotelemetry method was advanced for track the detailed behavior of the fish by the miniature tracking pinger, because it was a burden to fish to add the pinger with the water temperature and the pressure sensor. By combining of the super short base line (SSBL) method to detect the direction of pinger and the pinger synchronizing method to measure the range from receiving transducer to pinger, the three dimensional locations of fish to the receiving transducer is gotten instantaneously. The receiving system is devised to realize the high precision or wide detection range by application of the basic design method for receiving system of biotelemetry developed by the present authors and the hydrophone array configuration. The measurement distance error in the pinger synchronizing method is minimized through the correction of which the deviation of transmission pluse period of pinger is caused by changing water temperature. A prototype system which is able to track the instantaneously detailed location of the fish by the SSBL and pinger synchronizing biotelemetry (SPB) method was produced.

Ripple Compensation of Air Bearing Stage upon Gantry Control of Yaw motion (요 모션 갠트리 제어 시 공기베어링 스테이지의 리플 보상)

  • Ahn, Dahoon;Lee, Hakjun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.554-560
    • /
    • 2020
  • In the manufacturing process of flat panel displays, a high-precision planar motion stage is used to position a specimen. Stages of this type typically use frictionless linear motors and air bearings, and laser interferometers. Real-time dynamic correction of the yaw motion error is very important because the inevitable yaw motion error of the stage means a change in the specimen orientation. Gantry control is generally used to compensate for yaw motion errors. Flexure units that allow rotational motion are applied to the stage to apply this method to a stage using an air-bearing guide. This paper proposes a method to improve the constant speed motion performance of a H-type XY stage equipped with air bearing and flexure units. When applying the gantry control to the stage, including the flexure units, the cause of the mutual ripple generated from the linear motors is analyzed, and adaptive learning control is proposed to compensate for the mutual ripple. A simulation was performed to verify the proposed method. The speed ripple was reduced to approximately the 22 % level. The ripple reduction was verified by simulating the stage state where yaw motion error occurs.