• Title/Summary/Keyword: Precision Cold

Search Result 349, Processing Time 0.024 seconds

Interaction-based Collaborative Recommendation: A Personalized Learning Environment (PLE) Perspective

  • Ali, Syed Mubarak;Ghani, Imran;Latiff, Muhammad Shafie Abd
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.446-465
    • /
    • 2015
  • In this modern era of technology and information, e-learning approach has become an integral part of teaching and learning using modern technologies. There are different variations or classification of e-learning approaches. One of notable approaches is Personal Learning Environment (PLE). In a PLE system, the contents are presented to the user in a personalized manner (according to the user's needs and wants). The problem arises when a new user enters the system, and due to the lack of information about the new user's needs and wants, the system fails to recommend him/her the personalized e-learning contents accurately. This phenomenon is known as cold-start problem. In order to address this issue, existing researches propose different approaches for recommendation such as preference profile, user ratings and tagging recommendations. In this research paper, the implementation of a novel interaction-based approach is presented. The interaction-based approach improves the recommendation accuracy for the new-user cold-start problem by integrating preferences profile and tagging recommendation and utilizing the interaction among users and system. This research work takes leverage of the interaction of a new user with the PLE system and generates recommendation for the new user, both implicitly and explicitly, thus solving new-user cold-start problem. The result shows the improvement of 31.57% in Precision, 18.29% in Recall and 8.8% in F1-measure.

Finite Element Approach to Prediction of Dimensions of Cold Forgings (유한요소법을 이용한 냉간단조품의 치수 예측)

  • Jun B. Y.;Kang S. M.;Park J. M.;Lee M. C.;Park R. H.;Joun M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.192-198
    • /
    • 2005
  • In this paper, a systematic attempt for estimating geometric dimensions of cold forgings is made by finite element method and a practical approach is presented. In the approach, the forging process is simulated by a rigid-plastic finite element method under the assumption that the die is rigid. With the information obtained from the forging simulation, die structural analysis and springback analysis of the material are carried out. In the springback analysis, both mechanical load and thermal load are considered. The mechanical load Is applied by unloading the forming load elastically and the thermal load is by cooling the increased temperature due to the plastic work to the room temperature. All the results are added to predict the final dimensions of the cold forged product. The predicted dimensions are compared with the experiments. The comparison has revealed that predicted results are acceptable in the application sense.

  • PDF

Microscopic precision evaluation of machined surface according to the variation of cooling and lubrication method (냉각.윤활방식 변화에 따른 가공면의 미시적 정밀도 평가)

  • Hwang I.O.;Kwon D.H.;Kang M.C.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.225-226
    • /
    • 2006
  • As the technique of high-speed end-milling is widely adopted to machining field. The investigation for microscopic precision of workpiece is necessary for machinability evolution. The environmental pollution has become a big problem in industry and many researcher have investigated in order to preserve the environment. The environmentally conscious machining and technology have more important position in machining process. In the milling process, the cutting fluid has greatly bad influence on the environment. The damaged layer affect mold life and machine parts in machining. In this study, the cutting force, the surface roughness, micro hardness and residual stress is evaluated according to machining environment. Finally, it is obtained that the characteristics of damaged layer in environmentally conscious machining is better than that in conventional machining using cutting fluid.

  • PDF

Flow Distributions in the Channel of Plate Heat Exchanger Applied in Vacuum Evaporating Distiller System

  • Jin, Zhen-Hua;Park, Gi-Tae;Choi, Soon-Ho;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.389-394
    • /
    • 2008
  • Nowadays Plate Heat Exchanger (PHE) is widely used in different industries such as chemical, food and pharmaceutical process and refrigeration due to the efficient heat transfer performance, extreme compact design and efficient use of the construction material. In present work, PHE is applied in the fresh water generator system. Fresh water generators or desalinators are installed in ship to convert seawater to fresh water using heat from engines. PHE is an important part of a condensing or evaporating system. Among many of factors which should be concentrated on, the heat transfer and pressure drop is most important parts during sizing and rating the performance of PHE. Flow maldistribution is common but it will significantly reduce the heat exchanger performance. In this paper provide a overview of PHE cover basic of theory and conduct a numerical approach for flow distribution in plate channel. An experimental study on the performance of fresh water generator system which developed by plate heat exchanger will presented in future research. Thus, extensive experiment and analysis is required to study the thermal and fluid flow characteristics of PHE.

  • PDF

Effect of Reverse Transformation on the Microstructure and Retained Austenite Formation of 0.14C-6.SMn Alloy Steel (0.14C-6.5Mn 합금강의 미세조직과 잔류오스테나이트 형성에 미치는 역변태처리의 영향)

  • Song, K.H.;Lee, O.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.253-258
    • /
    • 2000
  • The present study aimed to develop the TRIP(transformation induced plasticity) aided high strength low carbon steel sheets using reverse transformation process. The cold-rolled 0.14C-6.5Mn steel was reverse-transformed by slow heating to intercritical temperature region and air cooling to room temperature. An excellant combination of tensile strength and elongation of $98.3kgf/mm^2$ and 44.4% appears. This combination comes from TRIP phenomena of retained austenite during deformation. The stability of retained austenite Is very Important for the good ductility and it depends on diffusion of carbon and manganese during reverse transformation. The air cooling after holding at intercritical temperature retards the formation of pearlite and provides the carbon enrichment in retained austenite, resulting the increase of elongation in cold-roiled TRIP steel.

  • PDF

Outer Bending of a Cold Forged Circle Flange (냉간단조된 후판형 플랜지 돌출부 굽힘성형 공정연구)

  • Kim, D.W.;Shin, Y.C.;Choi, H.J.;Yun, D.J.;Shin, I.C.;Lim, S.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.7
    • /
    • pp.453-458
    • /
    • 2012
  • The flange hub is a main component of an automotive steering system. Dimensional precision of the flange hub is very important for precise control of the steering force. Consequently, the process design for precision forming of a flange hub is required. The teeth of the flange hub are generally formed by bending. In this study, the formability of flange bending was investigated using FE simulations. For the optimum process conditions, the flange is bent by movement of an insert die, and the die angle and bending length are selected as $90^{\circ}$ and 4mm respectively.

Development of Accurate Bevel Gear Die (정밀 베벨 기어 금형개발)

  • 이광오;진민호;제진수;강성수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.43-46
    • /
    • 2003
  • To develop bevel gear dies that have characteristics of high precision and enough life time, the technology of die manufacturing and design which increase the resistance of wear and fatigue is essentially needed. Here in the study, we have investigated several materials for dies and electrode. And, the most economical and suitable electrode material has been selected through the characteristic analysis of electrode materials such as copper, graphite and chromium copper. With the help of CAD/CAM/CAE, the total manufacturing system of high precision electrode for bevel gear has been established.

  • PDF

Development of Precision Forging Process on the Clutch Gear of a Counter Shaft (카운터샤프트 클러치 기어의 정밀성형 공정 개발)

  • Kim, H.P.;Kim, Y.J.
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.54-58
    • /
    • 2012
  • A counter shaft gear is an important part in the transmission system of vehicle. Its shape is relatively complicated and should meets high strength. Traditionally it has been manufactured as follows; the counter shaft gear has consisted of a clutch and helical body with teeth which are forged and machined for teeth respectively and then attached by frictional welding. In this study, a new hot forging process was proposed and designed so that the counter shaft gear is formed as one body without divide it into two parts. Furthermore, the precision forging process has been developed for the clutch teeth without additional grinding.

  • PDF

A Study on Hot Precision Forging Processes for Spline Teethof a Counter Shaft Gear (카운터샤프트 기어의 스플라인 치형 정밀성형을 위한 열간단조 공정에 관한 연구)

  • Kim, H.P.;Kim, H.S.;Kim, Y.J.
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.6-11
    • /
    • 2012
  • A counter shaft gear is an important part in the transmission system of vehicle. Its shape is relatively complicated and should meets high strength. Traditionally the counter shaft gear has been manufactured as follows; a spline body is firstly machined for teeth and then attached to the main gear body by frictional welding, and finally is finished by grinding. Therefore it is necessary to develop a new manufacturing technology eliminating both frictional welding and grinding processes. In this study, a new hot forging process was proposed and designed so that the spline body with teeth and main gear body are formed as one body. Finite element simulations and experimental works were peformed for design of forging processes to get the quality final precision-forged product. Consequently the most suitable blocker process could be obtained.

  • PDF

Die Surface Texturing by Femtosecond Laser for Friction Reduction (펨토초레이저를 이용한 알루미늄 성형다이의 미세가공에 관한 연구)

  • Choi, Hae-Woon;Shin, Hyun-Myung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.57-63
    • /
    • 2009
  • Interface friction in blanking dies, cold forging and extrusion of aluminum alloys is a major cause of inefficient process. This paper describes an investigation of femtosecond laser texturing for reduction of interface friction on sliding surfaces in forming process. Femtosecond direct writing technology was used to fabricate a laser micro-machined die and to create microgroove patterns with varying size and density on metal forming dies. A systematic approach to find the optimum parameters and computer simulation comparison of friction coefficients are provided to study the relation of friction coefficients and die profiles. In metal forming tests, the effectiveness of various laser-machined patterns for enhancing interface lubrication is determined.