• Title/Summary/Keyword: Precision Agriculture

Search Result 267, Processing Time 0.026 seconds

Potential Application Topics of KOMPSAT-3 Image in the Field of Precision Agriculture

  • Kim, Seong-Joon;Lee, Mi-Seon;Kim, Sang-Ho;Park, Genn-Ae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.17-22
    • /
    • 2006
  • Potential application topics of KOMPSAT-3 image in the field of precision agriculture are suggested. The topics can be categorized as fundamental and applied ones that have contents of static and dynamic characteristics respectively. As fundamental topics, precision information of agriculture that is related to farmland and its crop attributes, precision information of rural infrastructure that is related to rural village and its facilities, precision information of stream environment that is related to rural water resources and its facilities, and precision information of eco-environment that is especially related to riparian ecology and environmental status are included. As applied topics, precision rural water resources that has thematic contents of continuous and event-based runoff, spatial and temporal soil moisture and evapotranspiration, precision agricultural watershed environment that has the contents of spatial and temporal soil loss, sediment and pollutants transport, and precision temporal and spatial crop growth that has the contents of temporal crop texture, spectral reflectance, leaf area index, spatial crop protein information.

POTENTIAL APPLICATION TOPICS OF KOMPSAT-3 IMAGE IN THE FIELD OF PRECISION AGRICULTURE MODEL

  • Kim, Seong-Joon;Lee, Mi-Seon;Kim, Sang-Ho;Park, Geun-Ae
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.432-435
    • /
    • 2006
  • Potential application topics of KOMPSAT-3 image in the field of precision agriculture are suggested. The topics can be categorized as fundamental and applied ones that have contents of static and dynamic characteristics respectively. As fundamental topics, precision information of agriculture that is related to farmland and its crop attributes, precision information of rural infrastructure that is related to rural village and its facilities, precision information of stream environment that is related to rural water resources and its facilities, and precision information of eco-environment that is especially related to riparian ecology and environmental status are included. As applied topics, precision rural water resources that has thematic contents of continuous and event-based runoff, spatial and temporal soil moisture and evapotranspiration, precision agricultural watershed environment that has the contents of spatial and temporal soil loss, sediment and pollutants transport, and precision temporal and spatial crop growth that has the contents of temporal crop texture, spectral reflectance, leaf area index, spatial crop protein information.

  • PDF

Precision Agriculture using Internet of Thing with Artificial Intelligence: A Systematic Literature Review

  • Noureen Fatima;Kainat Fareed Memon;Zahid Hussain Khand;Sana Gul;Manisha Kumari;Ghulam Mujtaba Sheikh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.155-164
    • /
    • 2023
  • Machine learning with its high precision algorithms, Precision agriculture (PA) is a new emerging concept nowadays. Many researchers have worked on the quality and quantity of PA by using sensors, networking, machine learning (ML) techniques, and big data. However, there has been no attempt to work on trends of artificial intelligence (AI) techniques, dataset and crop type on precision agriculture using internet of things (IoT). This research aims to systematically analyze the domains of AI techniques and datasets that have been used in IoT based prediction in the area of PA. A systematic literature review is performed on AI based techniques and datasets for crop management, weather, irrigation, plant, soil and pest prediction. We took the papers on precision agriculture published in the last six years (2013-2019). We considered 42 primary studies related to the research objectives. After critical analysis of the studies, we found that crop management; soil and temperature areas of PA have been commonly used with the help of IoT devices and AI techniques. Moreover, different artificial intelligence techniques like ANN, CNN, SVM, Decision Tree, RF, etc. have been utilized in different fields of Precision agriculture. Image processing with supervised and unsupervised learning practice for prediction and monitoring the PA are also used. In addition, most of the studies are forfaiting sensory dataset to measure different properties of soil, weather, irrigation and crop. To this end, at the end, we provide future directions for researchers and guidelines for practitioners based on the findings of this review.

Object-Oriented Field Information Management Program Developed for Precision Agriculture

  • Sung J. H.;Choi K. M.
    • Agricultural and Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.50-57
    • /
    • 2003
  • This study was conducted to develop software which provides automatic site-specific field data acquisition, data processing, data mapping and management for precision agriculture. The developed software supports acquisition and processing of both digital and analog data streams. The architecture was object-oriented and each component in the architecture was developed as a separate class. In precision agriculture research, the laborious task of manual ground-truth data collection will be avoided using the developed software. In addition, gathering high-density data eliminates the need for interpolation of values for un-sampled areas. This software shows good potential for expansion and compatibility for variable-rate-application (VRA). The FIM (Field Information Management) computer program provides the user with an easy-to-follow process for field information management for precision agriculture.

  • PDF

PRECISION AGRICULTURE RESEARCH AT KYOTO UNIVERSITY -- Concept and objectives of the research

  • Umeda, M.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.262-269
    • /
    • 2000
  • One of the way of the preserving environment is the circulation of materials. Japan's cereal food self-sufficiency rate is less than 30%. Japan imports more than 30 million tons of food every year. Japanese are afraid of international food trade giving damages to environment. Advanced farm mechanization integrated with precision farming is an answer to solve these problems. Crop scientists, soil scientists and agricultural engineers at Kyoto University cooperate together in studying precision agriculture for paddy rice since 1996. Automatic follow-up combine and autonomous vehicle have been developed. Remotely sensing by using machine vision has been studied to measure nitrogen contents. Field map i.e. soil, growth and yield, in paddy field of 0.5 ha has been made. In this report the concept and objectives of advanced farm mechanization and precision agriculture research at Kyoto University are introduced.

  • PDF

Development of Precision Agricultural Machine Education Program (정밀 농업기계 교육프로그램의 발전)

  • Hong, S.J.;Kim, D.E.;Kang, D.H.;Kim, J.J.;Kang, J.G.;Chung, S.O.;Mo, C.Y.;Ryu, D.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.2
    • /
    • pp.115-122
    • /
    • 2020
  • In Korea, the agricultural machinery market has been generally on the rise, and particularly the demand for the diverse agricultural machine is increasing due to the radical changes in agriculture, such as a high supply of the advanced and automated agricultural machine and an increase in aged or female farmer population. Therefore, this study analyzes the technical trends in the precision agricultural machine domestically and globally to guide the direction of development of the ICT-based machine. The investigation of the precision agricultural machine in this study focuses on the production technology through analyzing the trends in sensor-related technology, the decision-making research, variable treatment technology, and academic publication. The result shows that information processing technology including the sensor and the decision-making requires various measurement factors and the established technologies are continually being developed.

Environmental -Friendly Agricultural and Mechanization Trend in Japan -Prospects of Precision Farming in Japan (일본의 친환경 농업기계화기술 - 일본의 정밀농업 전망 -)

  • Shibuwasa, Sakae
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1999.06a
    • /
    • pp.53-80
    • /
    • 1999
  • Productivity and environmental conservation in nowadays trade-off and serious problem in agriculture. Precision farming is developing for solving the trade-off problem using systems approach and variable management. The systems approach is attributed to aiming at information-oriented agriculture, environmental-friendly sustainable agriculture, and complex system optimization . The variable management is composed of describing variability , variable-rate technology and decision support system. Three levels of technology development and three farming strategies are introduced for having a prospect. Describing the variability is the first step to promote it. Precision farming could be available for small scale farming as well as big scale farming. Paddy field precision farming will undergo in its distinctive way.

  • PDF

Research Trends and Their Perspectives in Precision Farming (정밀농업의 연구 동향과 전망)

  • 장영창;정선옥
    • Journal of Biosystems Engineering
    • /
    • v.23 no.3
    • /
    • pp.305-314
    • /
    • 1998
  • 최근 들어 농업생산기술 분야에서는 정밀농업이라는 용어 가 자주 등장하고 있으며 내용의 다양성에 기인하여 정밀농업(precision farming, precision agriculture), 처방농업(prescription farming), 국지 적 농업(site-specific filming, farming-by-the-fpot), 변량형 농업(variable rate agriculture)등의 여러 가지 명칭으로 불리고 있다. 현재 서구에서 새로운 농업의 표준이 되어 가고 있는 정밀농업의 근 특징은 기존 농업이 거시적, 통계적 접근방법임에 비교하여 미시적, 변량적 접근방법에 기초한다는 것이다.(중략)

  • PDF