• Title/Summary/Keyword: PrecisePLAN

Search Result 177, Processing Time 0.033 seconds

A study on Memory Analysis Bypass Technique and Kernel Tampering Detection (메모리 분석 우회 기법과 커널 변조 탐지 연구)

  • Lee, Haneol;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.661-674
    • /
    • 2021
  • Malware, such as a rootkit that modifies the kernel, can adversely affect the analyst's judgment, making the analysis difficult or impossible if a mechanism to evade memory analysis is added. Therefore, we plan to preemptively respond to malware such as rootkits that bypass detection through advanced kernel modulation in the future. To this end, the main structure used in the Windows kernel was analyzed from the attacker's point of view, and a method capable of modulating the kernel object was applied to modulate the memory dump file. The result of tampering is confirmed through experimentation that it cannot be detected by memory analysis tool widely used worldwide. Then, from the analyst's point of view, using the concept of tamper resistance, it is made in the form of software that can detect tampering and shows that it is possible to detect areas that are not detected by existing memory analysis tools. Through this study, it is judged that it is meaningful in that it preemptively attempted to modulate the kernel area and derived insights to enable precise analysis. However, there is a limitation in that the necessary detection rules need to be manually created in software implementation for precise analysis.

The Value of Computed Tomography Scan in Three-dimensional Planning and Intraoperative Navigation in Primary Total Hip Arthroplasty

  • Fabio Mancino;Andreas Fontalis;Ahmed Magan;Ricci Plastow;Fares S. Haddad
    • Hip & pelvis
    • /
    • v.36 no.1
    • /
    • pp.26-36
    • /
    • 2024
  • Total hip arthroplasty (THA) is a frequently performed procedure; the objective is restoration of native hip biomechanics and achieving functional range of motion (ROM) through precise positioning of the prosthetic components. Advanced three-dimensional (3D) imaging and computed tomography (CT)-based navigation are valuable tools in both the preoperative planning and intraoperative execution. The aim of this study is to provide a thorough overview on the applications of CT scans in both the preoperative and intraoperative settings of primary THA. Preoperative planning using CT-based 3D imaging enables greater accuracy in prediction of implant sizes, leading to enhancement of surgical workflow with optimization of implant inventory. Surgeons can perform a more thorough assessment of posterior and anterior acetabular wall coverage, acetabular osteophytes, anatomical landmarks, and thus achieve more functional implant positioning. Intraoperative CT-based navigation can facilitate precise execution of the preoperative plan, to attain optimal positioning of the prosthetic components to avoid impingement. Medial reaming can be minimized preserving native bone stock, which can enable restoration of femoral, acetabular, and combined offsets. In addition, it is associated with greater accuracy in leg length adjustment, a critical factor in patients' postoperative satisfaction. Despite the higher costs and radiation exposure, which currently limits its widespread adoption, it offers many benefits, and the increasing interest in robotic surgery has facilitated its integration into routine practice. Conducting additional research on ultra-low-dose CT scans and examining the potential for translation of 3D imaging into improved clinical outcomes will be necessary to warrant its expanded application.

Usefulness of High-Resolution Ultrasonography after Foreign Body Injection on Aesthetic Plastic Surgery (성형외과 영역에서 이물질 주사에 대한 고해상초음파 검사의 유용성)

  • Ko, Eung-Yeol;Sung, Ha-Min;Cho, Geon;Park, Young-Kyu;Tak, Kyoung-Seok;Suh, In-Suck;Yang, Ik
    • Archives of Plastic Surgery
    • /
    • v.37 no.4
    • /
    • pp.385-390
    • /
    • 2010
  • Purpose: The purpose of this study is to demonstrate the usefulness of the high resolutional ultrasonographic features in patients with foreign body. Methods: From September 2007 to August 2009, we retrospectively reviewed high resolutional ultrasonogram using 5~12 MHz linear transducer of 13 patients presenting with inflammation after foreign body injection. They were referred for complications after foreign body injection. Injected foreign bodies were 4 silicone, 4 paraffin, 2 artecoll, and 3 unknown. We treated them with foreign body removal (7), foreign body removal and corrective plastic surgery (4), and conservative treatment with antibiotics and steroid injection (2). Results: High resolutional ultrasonography well demonstrated the existence of foreign body and it's overall size, location within the tissue layer, and vascularity. Comparison between preoperative and postoperative ultrasonographic findings was useful not only to evaluate the prognosis but also to plan the treatment. These ultrasonographic findings aided in precise assessment of the contour and location of the foreign body and led to an accurate surgery. We were able to acquire various information in order to set a detailed plan for the operation which in turn, led to a precise, successful surgery. After the treatment, complication did not occur in 12 patients, except 1 patient. But this patient was also treated after reoperation. Postoperative high resolutional ultrasonography shows almost foreign body removed and inflammation disappeared. Conclusion: Considering the usefulness of highresolution ultrasonography in foreign body injection, highresolution ultrasonography would be necessary for both the patient and the doctor. Preoperative and postoperative high resolutional ultrasonography is highly accurate, safe, inexpensive and easy. It can be a useful modality in foreign body after plastic surgery.

Investigation of Leksell GammaPlan's ability for target localizations in Gamma Knife Subthalamotomy (감마나이프 시상하핵파괴술에서 목표물 위치측정을 위한 렉셀 감마플랜 능력의 조사)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.901-907
    • /
    • 2019
  • The aim of this study is to evaluate the ability of target localizations of Leksell GammaPlan(LGP) in Gamma Knife Subthalamotomy(or Pallidotomy, Thalamotomy) of functional diseases. To evaluate the accuracy of LGP's location settings, the difference Δr of the target coordinates calculated by LGP (or LSP) and author's algorithm was reviewed for 10 patients who underwent Deep Brain Stimulation(DBS) surgery. Δr ranged from 0.0244663 mm to 0.107961 mm. The average of Δr was 0.054398 mm. Transformation matrix between stereotactic space and brain atlas space was calculated using PseudoInverse or Singular Value Decomposition of Mathematica to determine the positional relationship between two coordinate systems. Despite the precise frame positioning, the misalignment of yaw from -3.44739 degree to 1.82243 degree, pitch from -4.57212 degree to 0.692063 degree, and rolls from -6.38239 degree to 7.21426 degree appeared. In conclusion, a simple in-house algorithm was used to test the accuracy for location settings of LGP(or LSP) in Gamma Knife platform and the possibility for Gamma Knife Subthalamotomy. The functional diseases can be treated with Gamma Knife Radiosurgery with safety and efficacy. In the future, the proposed algorithm for target localizations' QA will be a great contributor to movement disorders' treatment of several Gamma Knife Centers.

Community Structure Analysis of Carpinus laxiflora Communities in Seoul (서울지역 서어나무림의 군집구조 분석)

  • Park, Byung-Chang;Oh, Choong-Hyeon;Cho, Chi-Woung
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.4
    • /
    • pp.333-345
    • /
    • 2009
  • Carpinus laxiflora communities are known as the climax forest community of the temperate zone of Korea. There are three Carpinus laxiflora communities in Seoul. The purpose of this research is to analyze the characteristics of Carpinus laxiflora communities of Seoul and supply basic data for establishing of a management plan. The research sites are Sahmyook University, Mountain Dobong and Jinkwandong. This study considers investigation and the analysis of communities structure, soil characteristics and the growth increment of trees. As the result of study, we could know that the growth increment of the Carpinus laxiflora trees of Seoul is decreasing recently because of soil acidification and so on. Also the vegetation disturbance is increasing because of naturalized plant. Oak wilt disease has appeared in the oak forest around Sahmyook University that is the largest Carpinus laxiflora communities area in Seoul. For that reason the open gap was appeared in forest, and the spread of naturalized plants has been increasing in the gap. Furthermore, the Carpinus laxiflora trees are affected by the Platypus koryoensis which is a kind of oak wilt disease. And so, Unless there is a specific management plan, the survival of Carpinus laxiflora communities are uncertain in Seoul. Therefore the management plan of Carpinus laxiflora communities is necessary such as precise investigation, annual monitoring, etc. For the conservation of the Carpinus laxiflora communities, it is necessary to establish the management plan of the biodiversity for Seoul area.

Precise Diagnosis and Conservation Treatment of the Twin-lion Stone Lantern from the Godalsa Temple Site, Yeoju (여주 고달사지 쌍사자 석등의 정밀진단 및 보존처리)

  • National Museum of Korea Conservation Science Division;Damwon Cultural Heritage Inc.;Man Gyeong Corp.
    • Conservation Science in Museum
    • /
    • v.31
    • /
    • pp.71-103
    • /
    • 2024
  • The National Museum of Korea Conservation science division conducted a precise diagnosis and a non-destructive investigation to comprehensively assess the overall damage of the Twin-lion stone lantern from the Godalsa Temple site, Yeoju to be placed on display in the museum's outdoor stone garden, then reviewed the relevant conservation and management plan and applied conservation treatment to the artifact. The museum carried out the treatment in the following order: precise diagnosis; dismantling of the previously-restored part of the roof stone; reinforcement and restoration of the roof structure with new stone; restoration of the previously-restored part of the lantern's support stone (jungseok); surface texture treatment to the restored area; cleaning (basic, laser); and color matching. The previously-restored part of the roof stone was removed and restored with new stone material, based on the results of a safety diagnosis regarding the separation at the said part. Granite from the Sangju area was selected as the material for the restoration in consideration of the results of mineral analysis as well as the surface color and particle size. The new stone was divided into three pieces based on the descending edges of the octagonal roof structure and joined together using epoxy resin. The structure was further strengthened by inserting titanium rods. It is expected that the status diagnosis and conservation treatment of the twin-lion stone lantern from the Godalsa Temple site in Yeoju will be used as a reference for the future conservation and management of outdoor displays of stone cultural heritage.

Study on Flood Prediction System Based on Radar Rainfall Data (레이더 강우자료에 의한 홍수 예보 시스템 연구)

  • Kim, Won-Il;Oh, Kyoung-Doo;Ahn, Won-Sik;Jun, Byong-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.11
    • /
    • pp.1153-1162
    • /
    • 2008
  • The use of radar rainfall for hydrological appraisal has been a challenge due to the limitations in raw data generation followed by the complex analysis needed to come up with precise data interpretation. In this study, RAIDOM (RAdar Image DigitalizatiOn Method) has been developed to convert synthetic radar CAPPI(Constant Altitude Plan Position Indicator) image data from Korea Meteorological Administration into digital format in order to come up with a more practical and useful radar image data. RAIDOM was used to examine a severe local rainstorm that occurred in July 2006 as well as two other separate events that caused heavy floods on both upper and mid parts of the HanRiver basin. A distributed model was developed based on the available radar rainfall data. The Flood Hydrograph simulation has been found consistent with actual values. The results show the potentials of RAIDOM and the distributed model as tools for flood prediction. Furthermore, these findings are expected to extend the usefulness of radar rainfall data in hydrological appraisal.

Evaluation of auto contouring accuracy in 3D planning system (3차원 입체조형치료시 Auto Contouring tool의 유용성 평가)

  • Choi, JM;Ju, SG;Park, JY;Park, YH;Kim, JS
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.35-39
    • /
    • 2002
  • Introduction : It is essential to input patients external contour in 3D treatment plan. We would like to see changes in depth and dose when 3D RTP is operating auto contouring when windows value (Width/Level) differs in this process. Material & Methode : We have analyzed the results with 3D RTP after CT Scanning with round CT Phantom. We have compared and analyzed MU values according to depth changes to Isocenter changing external contour and inputting random Window value. We have watched change values according to dose optimization in 4 directions(LAO, LPO, RAO, RPO), We plan 100 case for exact analyzation. We have results changing window value random to each beam in 100 cans. Result : It showed change between minimum and maximum value in 4 beam is Depth 0.26mm, MU $1.2\%$ in LAO. It showed LPO-Depth 0.13mm, MU $0.9\%$, RAO-Depth 0.2mm MU $0.8\%$, RPO-Depth 0.27mm, MU $1.1\%$ Conclusion : Maximum change in depth 0.27 mm, MU error rate is $0.12\%$ according to Window change. As we can see in these results, it seems Window value change doesn't effect in treatment. However, it seems there needs to select appropriate Window value in precise treatment.

  • PDF

Virtual Surgical Planning and Stereolithography-guided Osteotomy for 3 Dimensional Mandibular Reconstruction with Free Fibula Osseous Flaps: A Case Report (비골을 이용한 3차원적 하악골 재건 시 가상모의수술 및 입체조형기법을 이용한 골절단 가이드의 활용: 증례보고)

  • Nam, Woong;Makhoul, Nicholas;Ward, Brent;Helman, Joseph I.;Edwards, Sean
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.5
    • /
    • pp.337-342
    • /
    • 2012
  • The osseous or osteocutaneous free fibula flap has become the gold standard for most mandibular reconstructions because of its favorable osseous characteristics. However, disadvantages, such as the time-consuming reconstructive step, difficulty in performing the osteotomies to precisely recreate the shape of the missing segment of mandible and poor bone-to-bone contact play a role in making the surgeons look for alternative flaps. With the advent of computerized design software, which accurately plans complex 3-dimensional reconstructions, has become a process that is more efficient and precise. However, the ability to transfer the computerized plan into the surgical field with stereolithographic models and guides has been a significant development in advancing reconstruction in the maxillofacial regions. The ability to "pre-plan" the case, mirror and superimpose natural structures into diseased and deformed areas, as well as the ability to reproduce these plans with good surgical precision has decreased overall operative time, and has helped facilitate functional and esthetic reconstruction. We describe a complex case treated with this technique, showing the power and elegance of computer assisted maxillofacial reconstruction from the University of Michigan, Oral and Maxillofacial Surgery.

An Architecture of the Military Aircraft Safety Check System Using 4th Industrial Revolution Technology (4차 산업혁명기술을 활용한 군 항공기 안전점검 체계 설계)

  • Eom, Jung-Ho
    • Convergence Security Journal
    • /
    • v.20 no.2
    • /
    • pp.145-153
    • /
    • 2020
  • The aviation safety policy master plan is promoting the development of aviation safety management technology applying the 4th industrial revolution technology with the goal of establishing a flawless aviation safety management system and establishing a future aviation safety infrastructure. The master plan includes the establishment of various aviation safety management systems such as aircraft fault management using AI & Big data and flight training system using VR/AR. Currently, the Air Force is promoting a flight safety management system using new technology under the goal of building smart air force. Therefore, this study intends to apply the 4th Industrial Revolution technology to the aircraft condition check system that finally checks the safety of the aircraft before flight. The Air Force conducts airframe flaw checks and pre-flight aircraft check. In this study, we architect the airframe flaw check system using AI and drones, and the pre-flight aircraft condition check system using the IoT and big data for more precise and detailed check of aircraft condition and flawlessness check.