• 제목/요약/키워드: Precipitation method

검색결과 1,689건 처리시간 0.034초

다단 침전법에 의한 구형 BaMgAl10O17:Eu 형광체의 제조 및 특성 (Preparation and Properties of Spherical BaMgAl10O17:Eu Phosphor by Multi-step Precipitation Method)

  • 박정민;정하균;박희동;박윤창
    • 한국재료학회지
    • /
    • 제12권11호
    • /
    • pp.840-844
    • /
    • 2002
  • A spherical $BaMgAl_{10}$ $O_{17}$ :Eu phosphor has been synthesized by a multi-step precipitation route. In order to successfully synthesize the phosphor with spherical shape, the hydrated-alumina particles should be controlled for spherical shape. In this process, the hydroxypropyl cellulose (HPC) was used as a dispersing reagent. This reagent plays an important role in that the particles were controlled to have the uniform size of sub-micron. The final product prepared by the multi-step precipitation method maintained spherical shape with uniform size of 0.4$\mu\textrm{m}$. It can be seen in X-ray diffraction patterns, formation of the single phase of $BaMgAl_{10}$ $O_{17}$ :Eu phosphor prepared by the multi-step precipitation method at $1350^{\circ}C$. Also, the emission spectra of spherical $BaMgAl_{O}$ $10_{17}$ :Eu phosphor in the present case was compared with those of commercially-available blue phosphor under VUV (Vacuum Ultra Violet) excitation. The luminescence process of the $BaMgAl_{10}$ $O_{17}$ :Eu phosphor is characterized by the $4f^{6}$$5d^1$longrightarrow4f$^{7}$ transition (blue) of the $Eu^{2+}$ ion acting as an activating center and the maximum luminescence intensity was obtained by reduction treatment at 145$0^{\circ}C$.

예보인자의 효과적 추출을 위한 다항식 방사형 기저 함수 신경회로망 기반 초단기 강수예측 분류기의 설계 (Design of Very Short-term Precipitation Forecasting Classifier Based on Polynomial Radial Basis Function Neural Networks for the Effective Extraction of Predictive Factors)

  • 김현명;오성권;김현기
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.128-135
    • /
    • 2015
  • In this study, we develop the very short-term precipitation forecasting model as well as classifier based on polynomial radial basis function neural networks by using AWS(Automatic Weather Station) and KLAPS(Korea Local Analysis and Prediction System) meteorological data. The polynomial-based radial basis function neural networks is designed to realize precipitation forecasting model as well as classifier. The structure of the proposed RBFNNs consists of three modules such as condition, conclusion, and inference phase. The input space of the condition phase is divided by using Fuzzy C-means(FCM) and the local area of the conclusion phase is represented as four types of polynomial functions. The coefficients of connection weights are estimated by weighted least square estimation(WLSE) for modeling as well as least square estimation(LSE) method for classifier. The final output of the inference phase is obtained through fuzzy inference method. The essential parameters of the proposed model and classifier such ad input variable, polynomial order type, the number of rules, and fuzzification coefficient are optimized by means of Particle Swarm Optimization(PSO) and Differential Evolution(DE). The performance of the proposed precipitation forecasting system is evaluated by using KLAPS meteorological data.

약침액(藥鍼液) 제조법(製造法)에 대한 문헌적(文獻的) 고찰(考察) (The Study on The Method of Manufacturing Herbal Acupuncture)

  • 이준희;이상룡
    • Korean Journal of Acupuncture
    • /
    • 제22권2호
    • /
    • pp.127-149
    • /
    • 2005
  • This study is designed to investigate the method of manufacturing herbal acupuncture through literature of oriental medicine. The findings of this study are as follows; 1. The methods of manufacturing herbal acupuncture go through the process of abstraction, purification, mixing, filtration, putting and tight sealing in the container, sterilization, quality control, printing and packing 2. There are many ways to manufacturing herbal acupuncture, for example water-alcohol precipitation, alcohol-water precipitation, liquid-liquid abstract, acid-base abstract, metal base precipitation, distillation, molecular structure, polyamide absorption, dialysis, and ion exchange, etc. And popular method is water-alcohol precipitation. This is through alcohol precipitate extracting the principal ingredients from water abstraction. This is very simple and efficient way using melting characteristics of compounds in herb to water and ethanol. 3. Sterilization of herbal acupuncture is through heating-pressure, boiling, steam flowing, low temperature, filtering, radiation, cooling, and microwaves. Nowadays filtering is commonly used. And sterilization is estimated by an examination of asepsis . 4. Herbal acupuncture must be undergo study and experiment to clinical use. The problems of herbal acupuncture are turbidity, instability, causing hemolysis, pain, and fever. So many provisions (addition, sterilization, and filtration etc.) must be prepared. 5. The theory of manufacturing herbal acupuncture is from oriental medicine, not western. So it must be corresponded to oriental medical theory, for example Gimi(氣味), Guigyung(歸經), Ingyung(引經), Bosa(補瀉), and Match of Herb. It is recommended that further study of many other sided investigations in the future.

  • PDF

업싸이클링된 암모늄 파라텡스텐의 열적 및 화학적 분해법 비교 (Comparing Thermal and Chemical Decomposition of Up-Cycled Ammonium Paratungstate(APT))

  • 정준기;온진호;김성진;박상엽
    • 한국재료학회지
    • /
    • 제25권6호
    • /
    • pp.274-278
    • /
    • 2015
  • The possibility of using the chemical precipitation method of up-cycled ammonium paratungstate (APT) was studied and compared with the thermal decomposition method. $WO_3$ particles were synthesized by chemical precipitation method using a 1:2 weight ratio of APT: Di-water. For thermal decomposition, APT powder was heated for 4h at $600^{\circ}C$ in air atmosphere. The reaction products were characterized by X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), particle size analyzer (PSA), and field emission-scanning electron microscopy (FE-SEM). Thermogravimetric analysis (TGA) of the up-cycled APT allowed for the identification of the sequence of decomposition and reduction reactions that occurred during the heat treatment. TGA data indicated a total weight loss of 10.78% with the reactions completed in $658^{\circ}C$. The XRD results showed that APT completely decomposed to $WO_3$ by thermal decomposition and chemical precipitation. The particle size of the synthesized $WO_3$ powders by thermal decomposition with 2 h of planetary milling was around $2{\mu}m$ During the chemical precipitation process, the particle size of the synthesized $WO_3$ powders showed a round-shape with ${\sim}0.6{\mu}m$ size.

침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 미세구조 및 기계적 특성 (Microstructures and Mechanical Properties of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method)

  • 홍기곤;이홍림
    • 한국세라믹학회지
    • /
    • 제27권8호
    • /
    • pp.991-1003
    • /
    • 1990
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent, various types of metal hydroxides were obtained by single precipitation(series A) and co-precipitation(series B) method at the pH condition between 7 and 11. Fine Al2O3-ZrO2 powders were prepared at optimum calcination condition and the effects of ZrO2 on microstructures and mechanical properties of Al2O3 were investigated. The composition of Al2O3/ZrO2 composites wax fixed as Al2O3-15 v/o ZrO2(+3m/o Y2O3). ZrO2 limited the grain growth of Al2O3 and increased grain size homogeneity of Al2O3 more effectively than MgO.Flexural strength values in Al2O3 and Al2O3/ZrO2 composites were 340-430 MPa and 540-820 MPa, respectively, and the effect of strength improvement showed 20-50% by adding ZrO2 to Al2O3. Fracture toughness of Al2O3/ZrO2 composites was improved by stress-induced phase transformation of tetragonal ZrO2 and toughening effect by microcrack was not observed. Also, ZrO2 particles located at Al2O3 grain junction contributed to toughening, while spherical ZrO2 particles located within Al2O3 grain did not contribute to toughening. Weibull moduli of Al2O3 ceramics and Al2O3/ZrO2 composites of series A and series B were 4.34, 5.17 and 9.06, respectively. Above 0.5 of failure probability, strength values in Al2O3 ceramics and Al2O3/ZrO3 composites of series A and series B were above 400 MPa, 700 MPa and 650 MPa, respectively.

  • PDF

침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 열충격 거동 (Thermal Shock Behavior of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method)

  • 홍기곤;이홍림
    • 한국세라믹학회지
    • /
    • 제28권1호
    • /
    • pp.11-18
    • /
    • 1991
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics, and the effects of stress-induced phase transformation of ZrO2 on thermal shock behavior of Al2O3-ZrO2 ceramics were investigated. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Metal hydroxides were obtained by single precipitation(process A) and co-precipitation(process B) method at the condition of pH=7, and the composition of Al2O3-ZrO2 composites was fixed as Al2O3-15v/o ZrO2(+3m/o Y2O3). Critical temperature difference showing rapid strength degradation by thermal shock showed higher value in Al2O3/ZrO2 composites(process A : 20$0^{\circ}C$, process B : 215$^{\circ}C$) than in Al2O3(175$^{\circ}C$). The improvement of thermal shock property for Al2O3/ZrO2 composites was mainly due to the increase of strength at room temperature by adding ZrO2. The strength degradation was more severe for the sample with higher strength at room temperature. Crack initiation energies by thermal shock showed higher values in Al2O3/ZrO2 composites than in Al2O3 ceramics due to increase of fracture toughness by ZrO2.

  • PDF

Optimization red emission of SrMoO4: Eu3+ via hydro-thermal co-precipitation synthesis using orthogonal experiment

  • Tan, Yongjun;Luo, Xuedan;Mao, Mingfu;Shu, Dehua;Shan, Wenfei;Li, Guizhi;Guo, Dongcai
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1403-1409
    • /
    • 2018
  • In the present study, the $SrMoO_4:Eu^{3+}$ phosphors has been synthesized through hydro-thermal co-precipitation method, and single factor and orthogonal experiment method was adopted to find optimal synthesis condition. It is interesting to note that hydro-thermal temperature is a prominent effect on the luminescent intensity of $SrMoO_4:Eu^{3+}$ red phosphor, followed by co-precipitation temperature, calcining time, and the doping amount of $Eu^{3+}$. The optimal synthesis conditions were obtained: hydro-thermal temperature is $145^{\circ}C$, co-precipitation temperature is $35^{\circ}C$, the calcining time is 2.5 h, and the doping amount of activator $Eu^{3+}$ is 25%. Subsequently, the crystalline particle size, phase composition and morphology of the synthesized phosphors were evaluated by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The results show that these phosphors possess a scheelite-type tetragonal structure, and the particle size is about $0.2{\mu}m$. Spectroscopic investigations of the synthesized phosphors are carried out with the help of photo-luminescence excitation and emission analysis. The studies reveal that $SrMoO_4:Eu^{3+}$ phosphor efficiently convert radiation of 394 nm-592 and 616 nm for red light, and the luminescence intensity of $SrMoO_4:Eu^{3+}$ phosphors is improved. $SrMoO_4:Eu^{3+}$ phosphors may be a potential application for enhancing the efficiency of white LEDs.

A Simple and Effective Purification Method for Removal of U(VI) from Soil-Flushing Effluent Using Precipitation: Distillation Process for Clearance

  • Hyun-Kyu Lee;Ilgook Kim;In-Ho Yoon;Wooshin Park;Seeun Chang;Hongrae Jeon;Sungbin Park
    • Journal of Radiation Protection and Research
    • /
    • 제48권2호
    • /
    • pp.77-83
    • /
    • 2023
  • Background: The purpose of this study is to purify uranium (U[VI])-contaminated soil-flushing effluent using the precipitation-distillation process for clearance. Precipitation and distillation are commonly used techniques for water treatment. We propose using a combination of these methods for the simple and effective removal of U(VI) ions from soil-flushing effluents. In addition, the U concentration (Bq/g) of solid waste generated in the proposed treatment process was analyzed to confirm whether it satisfies the clearance level. Materials and Methods: Uranium-contaminated soil was decontaminated by soil-flushing using 0.5 M sulfuric acid. The soil-flushing effluent was treated with sodium hydroxide powder to precipitate U(VI) ions, and the remaining U(VI) ions were removed by phosphate addition. The effluent from which U(VI) ions were removed was distilled for reuse as a soil-flushing eluent. Results and Discussion: The purification method using the precipitation-distillation process proposed in this study effectively removes U(VI) ions from U-contaminated soil-flushing effluent. In addition, most of the solid waste generated in the purification process satisfied the clearance level. Conclusion: The proposed purification process is considered to have potential as a soil-flushing effluent treatment method to reduce the amount of radioactive waste generated.

맥주매송게임에서 다구찌 방법에 의한 불확실 정보 기반 의사결정 연구 (Decision-Making based on Uncertain Information in a Beer Distribution Game U sing the Taguchi Method)

  • 이기광
    • 산업경영시스템학회지
    • /
    • 제33권3호
    • /
    • pp.162-168
    • /
    • 2010
  • Information is known to be a key element for the successful operation of a supply chain, which is required of the efficient ordering strategies and accurate predictions of demands. This study proposes a method to effectively utilize the meteorological forecast information in order to make decisions about ordering and prediction of demands by using the Taguchi experimental design. It is supposed that each echelon in a supply chain determines the order quantity with the prediction of precipitation in the next day based on probability forecast information. The precipitation event is predicted when the probability of the precipitation exceeds a chosen threshold. Accordingly, the choice of the threshold affect the performances of a supply chain. The Taguchi method is adopted to deduce a set of thresholds for echelons which is least sensitive to changes in environmental conditions, such as variability of demand distributions and production periods. A simulation of the beer distribution game was conducted to show that the set of thresholds found by the Taguchi method can reduce the cumulative chain cost, which consists of inventory and backlog costs.

한계 침투량을 고려한 강우와 지하수위의 상관관계를 이용한 주 단위 지하수자원 관리 취약시기 평가 방법 개발 (Development of the assessment method for weekly groundwater resources management vulnerability using the correlation between groundwater level and precipitation considering critical infiltration concept)

  • 이재범;양정석;김일환
    • 한국수자원학회논문집
    • /
    • 제51권12호
    • /
    • pp.1237-1245
    • /
    • 2018
  • 본 연구에서는 주 단위 지하수자원 관리 취약시기 평가 방법을 개발하였다. 강수의 지하수위에 대한 영향을 고려하기 위하여 한계 침투량을 고려한 강우이동평균 방법을 통해 지하수위와의 상관계수를 산정하였다. 취약 시기 평가 기준을 개발하고 평가 기준에 대한 가중치를 엔트로피 방법을 이용하여 산정하였다. 강수와의 상관계수와 산정된 가중치를 이용한 주 단위 지하수자원 관리 취약시기 평가 방법을 개발하였으며, 개발한 방법을 통하여 소규모 행정구역을 대상으로 취약시기를 평가하였다. 본 연구에서 개발된 방법은 지역적일뿐만 아니라 계절적인 지하수자원의 효율적 관리 대책 수립의 근거가 될 수 있을 것이다.