본 연구는 일조시간과 강수량 자료를 이용하여 다중회귀 방법을 통해 일사량을 추정하였다. 연구에 사용된 자료들은 강릉지역에 위치한 강원지방기상청(105 관측소, 1980-2007)과 신강원지방기상청(104 관측소, 2009-2014) 그리고 강릉원주대학교(GWNU 관측소, 2013-2014)이며, 105 관측소 자료를 통해 산출된 회귀식을 104 관측소와 GWNU 관측소에 적용하여 비교분석하였다. 먼저, 일조시간만을 이용하였을 때 104 관측소는 기존 연구들과 유사한 상관계수(0.96)와 표준오차($1.16MJm^{-2}$)가 나타났고, GWNU 관측소에서는 높은 상관계수(0.99)와 낮은 표준오차($0.57MJm^{-2}$)로 분석되었다. 그리고 일조시간과 강수량 자료를 104 관측소에 적용하였을 때 상관계수 0.96과 표준오차 $0.99MJm^{-2}$로 일조시간만을 적용했을 때보다 표준오차가 감소되었다. 일조시간만을 이용한 방법보다 강수량이 추가된 방법은 관측 일사량과 편차의 극값이 -26.6%(2010년 3월)에서 -31.0%(2011년 2월)로 증가되었다. 이는 강수량이 5월과 7-9월에 집중되어 나타나 이외의 월에서 추정식의 계수가 음으로 계산되었기 때문으로 분석된다. 따라서 한반도와 같이 강수량이 여름철에 집중되는 지역에서는 월평균 강수량을 일사량 추정에 이용할 때 주의를 기울여야 할 것이다.
WGR 강우모형은 중규모 정도의 강우를 표현하기 위해 개발된 개념적인 모형으로 대기의 동역학적 특성과 강우의 통계학적 특성이 비교적 잘 반영된 모형이다(Waymire 등, 1984). 그러나 이 모형은 최대 18개의 매개변수르 가지며 모형의 구조가 강한 비선형성을 가지고 있어 매개변수 추정이 매우 어려운 문제로 남아 있다. 지금까지 각각 다른 지역의 강우에 대해 비선형 최적화 기법(non-linear programming; NLP)을 이용하여 매개변수를 추정한 예가 있으나 그 과정 자체가 매우 복잡하여 이 모형을 다른 목적으로 이용하는데 문제로 지적되고 있다. 본 연구에서는 유전자 알고리즘(genetic algorithm; GA)을 이용한 WGR 모형의 매개변수 추정법을 제시하였으며, 이를 한강유역에 적용하여 NLP에 의한 결과 (Yoo와 Kwon, 2000)와 비교하였다. 적용 결과 GA는 NLP에 비해 상대적으로 작은 SSE(sum of square error)를 나타내었고 계절의 변화에 보다 일관적인 반응을 보임을 알 수 있었다. 또한 추정된 매개변수 분석결과, 여름철의 높은 강우량은 강우 세포의 강도보다는 강우전선의 도달율과 밀접한 관계가 있는 것으로 나타났다.
Rainfall is an important input to hydrological models. The accuracy of hydrological studies for water resources and floods management depend primarily on the estimation of rainfall. Thailand is among the countries that have regularly affected by floods. Flood forecasting and warning are necessary to prevent or mitigate loss and damage. Merging near real time satellite-based precipitation estimation with relatively high spatial and temporal resolutions to ground gauged precipitation data could contribute to reducing uncertainty and increasing efficiency for flood forecasting application. This study tested the applicability of satellite-based rainfall for water resources management and flood forecasting. The objectives of the study are to assess uncertainty associated with satellite-based rainfall estimation, to perform bias correction for satellite-based rainfall products, and to evaluate the performance of the bias-corrected rainfall data for the prediction of flood events. This study was conducted using a case study of Thai catchments including the Chao Phraya, northeastern (Chi and Mun catchments), and the eastern catchments for the period of 2006-2015. Data used in the study included daily rainfall from ground gauges, telegauges, and near real time satellite-based rainfall products from TRMM, GSMaP and PERSIANN CCS. Uncertainty in satellite-based precipitation estimation was assessed using a set of indicators describing the capability to detect rainfall event and efficiency to capture rainfall pattern and amount. The results suggested that TRMM, GSMaP and PERSIANN CCS are potentially able to improve flood forecast especially after the process of bias correction. Recommendations for further study include extending the scope of the study from regional to national level, testing the model at finer spatial and temporal resolutions and assessing other bias correction methods.
In this study, we develop the very short-term precipitation forecasting model as well as classifier based on polynomial radial basis function neural networks by using AWS(Automatic Weather Station) and KLAPS(Korea Local Analysis and Prediction System) meteorological data. The polynomial-based radial basis function neural networks is designed to realize precipitation forecasting model as well as classifier. The structure of the proposed RBFNNs consists of three modules such as condition, conclusion, and inference phase. The input space of the condition phase is divided by using Fuzzy C-means(FCM) and the local area of the conclusion phase is represented as four types of polynomial functions. The coefficients of connection weights are estimated by weighted least square estimation(WLSE) for modeling as well as least square estimation(LSE) method for classifier. The final output of the inference phase is obtained through fuzzy inference method. The essential parameters of the proposed model and classifier such ad input variable, polynomial order type, the number of rules, and fuzzification coefficient are optimized by means of Particle Swarm Optimization(PSO) and Differential Evolution(DE). The performance of the proposed precipitation forecasting system is evaluated by using KLAPS meteorological data.
Accurate characterization of terrestrial precipitation variation from high spatial resolution satellite sensors is beneficial for urban hydrology and microscale agriculture modeling, as well as natural disasters (e.g., urban flooding) early warning. However, the widely-used top-down approach for precipitation retrieval from microwave satellites is limited in several hydrological and agricultural applications due to their coarse spatial resolution. In this research, we aim to apply a novel bottom-up method, the parameterized SM2RAIN, where precipitation can be estimated from soil moisture signals based on an inversion of water balance model, to generate high spatial resolution terrestrial precipitation estimates at 0.01º grid (roughly 1-km) from the C-band SAR Sentinel-1. This product was then tested against a common reanalysis-based precipitation data and a domestic rain gauge network from the Korean Meteorological Administration (KMA) over central South Korea, since a clear difference between climatic types (coasts and mainlands) and land covers (croplands and mixed forests) was reported in this area. The results showed that seasonal precipitation variability strongly affected the SM2RAIN performances, and the product derived from separated parameters (rainy and non-rainy seasons) outperformed that estimated considering the entire year. In addition, the product retrieved over the mainland mixed forest region showed slightly superior performance compared to that over the coastal cropland region, suggesting that the 6-day time resolution of S1 data is suitable for capturing the stable precipitation pattern in mainland mixed forests rather than the highly variable precipitation pattern in coastal croplands. Future studies suggest comparing this product to the traditional top-down products, as well as evaluating their integration for enhancing high spatial resolution precipitation over entire South Korea.
본 연구에서는 M-PRISM 모형을 이용하여 $1km{\times}1km$ 공간해상도 일강수량 추정에 대한 적용성을 검토하였다. 또한 회귀모형을 이용하여 M-PRISM 모형 매개변수를 추정하였으며, 잭나이프 방법을 이용하여 모형을 검증하였다. 기상청 385개 강수 관측지점에 대하여 M-PRISM을 이용하여 일강수량을 추정하고 PRISM 모형과 비교하였다. 비교결과, 강수의 정량적 크기를 추정에서는 두 모형에서 뚜렷한 차이를 찾아볼 수 없었으나, 강수의 발생빈도 추정에 있어서는 M-PRISM 모형이 더 우수한 결과를 나타내었다. 따라서 본 연구에서 제안한 M-PRISM 모형은 고해상도의 일강수량을 추정함에 있어서 매우 유용하게 사용될 수 있을 것으로 판단된다.
수자원을 평가하기 위해서는 먼저 한 지점에서 측정된 강수량을 보간해야 할 필요가 있다. 이를 위하여 강수현상에 영향을 주는 지형변수를 TOVA(Topographic Variables Extraction Program)를 이용하여 고도(ELEV), 경사(SLOPE), 바다까지의 거리(SEA), 방해물(OBST), 방벽(BAR), 굴곡도(SHIELD)로 구분하고 2000.1.1부터 2002.12.31까지의 강수량 자료를 사상별로 추출하여 이들을 서로 비교 분석하였다. 결정계수로 보면 각기 강수사상마다 지형의 영향이 다르게 나타나며 ELEV와 남서방향의 SLOPE, OBST 그리고 전 방향의 SHIELD가 강수량과 관계가 깊은 것으로 나타났다. 다중회귀분석 모형은 강수량의 공간적 변동량의 96%를 설명한다.
이 연구는 우리나라를 대상으로 일 강우자료를 생성하는 방법을 모색하기 위하여 진행되었다. 우선 전국 23개 기상관서의 과거 30년간의 일 강우자료를 수집하여 기상생성방법으로 많이 이용되는 조건부 확률을 이용한 Markov 연쇄와 감마 분포 함수를 결합하는 방법을 적용하여 본 결과 관측자료와 유사한 일 강우자료를 생성하였고, 23개 지점별로 강우특성을 나타내는 4종의 모수를 계산할 수 있었다. 또한 새로운 방법을 이용하여 지점의 강우특성을 나타내는 모수는 월 강우량으로부터 추정할 수 있었고, 이를 적용하여 1981~2010년, 2011~2015년 두 기간을 대상으로 일 강우자료를 생성하여 기존의 관측자료와 비교한 결과 매우 유사한 분포를 나타내는 것을 알 수 있었다. 따라서 월 강우량 자료를 이용하여 강우특성모수를 산출하고 이로부터 일 강우자료를 생성하는 조건부 확률과 감마 분포 함수를 결합한 방법은 농업의 기후변화 영향과 수자원의 연구에 실용적으로 이용될 것으로 기대된다.
강우 현상은 물 순환과 에너지 순환의 주요 요소 중 하나이며 강우량 추정은 수자원 확보와 수재해 예측 및 피해 감축에 매우 중요한 역할을 한다. 위성 기반 강우량 추정은 시공간적으로 고해상도인 자료를 통하여 넓은 지역을 연속적으로 감시할 수 있다는 장점이 있다. 본 연구에서는 Himawari-8 Advanced Himawari Imager(AHI) 수증기 채널(6.7 ㎛), 적외 채널(10.8 ㎛)과 기상 레이더 Column Max (CMAX) 합성장을 이용하여 기계학습 기반 정량적 강우량 추정 모델을 개발하였다. 기계학습 기법으로는 랜덤 포레스트(Random Forest, RF)를 사용하였으며 기상 레이더 반사도(dBZ)와 Z-R식으로 변환한 강우강도(mm/hr)를 타겟으로 하는 모델을 구축하여 비교하였다. 레이더 강우강도를 통해 검증하였을 때 임계성공지수(Critical Success Index, CSI)는 0.34, Mean-Absolute-Error (MAE) 4.82 mm/hr였다. GeoKompsat-2(GK-2A) 강우강도 산출물, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)-Cloud Classification System (CCS) 산출물과 비교하였을 때 강우 유무 분류에서 CSI 21.73%, 10.81%, 강우강도 정량적 평가에서 MAE 31.33%, 23.49% 높은 성능을 보였다. 강우량 산출물을 지도화 한 결과, 실제 강우강도 분포와 유사한 분포를 모의하여 기존 산출물 대비 높은 정확도의 강우량을 추정했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.