Recently, the quantitative management of agricultural water supply, which is the main source for water consumption in Korea, has become more important due to the effective water management organization of the Korean government. In this study, the estimation method for irrigation supply based on agricultural reservoir storage data was improved compared to previous research, in which drought year selection was unclear, and the outlier data for the rainfall-irrigation supply were not eliminated in the regression analysis. In this study, the drought year was selected by the ratio of annual precipitation to mean annual precipitation and the storage rate observed before the start of irrigation. The outlier data for the rainfall-irrigation supply were eliminated by the Grubbs & Beck test. The proposed method was applied to nine agricultural reservoirs for validation. As a result, the ratio of annual precipitation to mean annual precipitation is less than 53% and the storage rate observed before the start of irrigation is less than 55% it was judged to be the drought year. In addition, the drought supply factor, K, was found to be 0.70 on average, showing closer results to the observed reservoir rates. This shows that water management at the real is appling drought year practice. It was shown that the performance of the proposed method was satisfactory with NSE (Nash-Sutcliffe model efficiency coefficient) and R2 (coefficient of determiniation) except for a few cases.
Spatial distribution of precipitation has been estimated based on the local gauge correction (LGC) with a fixed inverse distance weighting (IDW), which is not optimized in taking effective radius into account depending on the radar error. We developed an algorithm, improved local gauge correction (ILGC) which eliminates outlier in radar rainrate errors and optimize distance power for IDW. ILGC was statistically examined the hourly cumulated precipitation from weather for the heavy rain events. Adjusted radar rainfall from ILGC is improved to 50% compared with unadjusted radar rainfall. The accuracy of ILGC is higher to 7% than that of LGC, which resulted from a positive effect of the optimal algorithm on the adjustment of quantitative precipitation estimation from weather radar.
본 연구에서는 부산지방기상청 장기 강수량 자료(1973-2007)를 이용하여 부산지역 확률강수량 및 이에 따른 재현 기간을 산정하였다. 확률강수량 산정에 있어서 확률가중모멘트법을 이용하여 매개변수를 추정하였고, $x^2$ 및 PPCC 검정을 통해 적합성분석을 실시하였다. 분석결과 최적의 확률분포형으로 GLO 모형을 채택하였다. 또한 AWS 자료를 이용하여 부산지역 확률강수량 분포도를 작성하였다. 6시간 지속강수량에 있어서 245.2 mm의 강수량이 100년 마다 발생할 수 있으며, 280.6 mm가 200년에 한번 정도 나타날 수 있다. 확률강수량 분포도 결과 1시간 지속강수일 경우 동래구에서 높은 값을 가지며, 3시간 지속강수는 부산연안 전반에 걸쳐 높게 나타나고 있다. 6시간 지속강수량일 경우는 부산진과 양산일대에서 높은 값을 나타내며 12시간 지속강수의 경우 남동연안지역과 웅상 일대에서 높은 값을 보이는 특징이 나타났다.
The performance of radar Quantitative Precipitation Estimation (QPE) using Long Short-Term Memory (LSTM) networks in hydrological applications depends on either the quality of data or the three-dimensional CAPPI structure from the weather radar. While radar data quality is controlled and enhanced by the more and more modern radar systems, the effect of CAPPI structure still has not yet fully investigated. In this study, three typical and important types of CAPPI structure including inverse-pyramid, cubic of grids 3x3, cubic of grids 4x4 are investigated to evaluate the effect of CAPPI structures on the performance of radar QPE using LSTM networks. The investigation results figure out that the cubic of grids 4x4 of CAPPI structure shows the best performance in rainfall estimation using the LSTM networks approach. This study give us the precious experiences in radar QPE works applying LSTM networks approach in particular and deep-learning approach in general.
The limits of S-band dual-polarization radars in Korea are not reflected on the recent weather forecasts of Korea Meteorological Administration and furthermore, they are only utilized for rainfall estimations and hydrometeor classification researches. Therefore, this study applied four merging methods [SA (Simple Average), WA (Weighted Average), SSE (Sum of Squared Error), TV (Time-varying mergence)] to the QPE (Quantitative Precipitation Estimation) model [called RAR (Radar-AWS Rainfall) calculation system] using single-polarization radars and S-band dual-polarization radar in order to improve the accuracy of the rainfall estimation of the RAR calculation system. As a result, the merging results of the WA and SSE methods, which are assigned different weights due to the accuracy of the individual model, performed better than the popular merging method, the SA (Simple Average) method. In particular, the results of TVWA (Time-Varying WA) and TVSSE (Time-Varying SSE), which were weighted differently due to the time-varying model error and standard deviation, were superior to the WA and SSE. Among of all the merging methods, the accuracy of the TVWA merging results showed the best performance. Therefore, merging the rainfalls from the RAR calculation system and S-band dual-polarization radar using the merging method proposed by this study enables to improve the accuracy of the quantitative rainfall estimation of the RAR calculation system. Moreover, this study is worthy of the fundamental research on the active utilization of dual-polarization radar for weather forecasts.
We estimate the economic benefit of weather modification (precipitation enhancement and fog dissipation) by assuming its operation for the considered regions. Based on the statistical data, the economic benefit of the virtually operational precipitation enhancement experiments for the Andong and Imha basins, where the natural precipitation is relatively lack in South Korea, is calculated 348 for the water resources, 22,458 for forest fire prevention, and 28,458 million won/year for the drought relief. The benefit of the fog dissipation operation for the Incheon International Airport is estimated 7,365 million won/year for the flight delay due to fog. The calculated ratio of benefit to cost for precipitation enhancement operation for the basins is 14.07, which is comparable to that conducted in other countries.
Jeju Island, a volcanic island, is the region that shows the biggest rainfall and has a big elevation-specific deviation of precipitation, but Jeju Island River Maintenance Plan doesn't reflect the characteristics of Jeju Island as it only calculates probable precipitation from four weather stations with elevation less than 100m. Therefore, this study uses AWS observational data in four Jeju Island weather stations and other regions to calculate location-specific probable precipitation, review the elevation-probable precipitation correlation in southern and northern regions, and create a probable precipitation map for all regions of Jeju Island, in order to produce better outcomes. This study is expected to be the most basic data to establish a safe Jeju island from flood disaster in preparation for the future climate changes and widely used for Jejudo Basin Dimension Planning, River Maintenance Plan, Pre-Disaster Impact Review, etc.
Access to accurate spatial precipitation in many hydrological studies is necessary. Existence of many mountains with diverse topography in South Korea causes different spatial distribution of precipitation. Rain gauge stations show accurate precipitation information in points, but due to the limited use of rain gauge stations and the difficulty of accessing them, there is not enough accurate information in the whole area. Weather radars can provide an integrated precipitation information spatially. Despite this, weather radar data have some errors that can not provide accurate data, especially in heavy rainfall. In this study, some location-based variable like aspect, elevation, plan curvature, profile curvature, slope and distance from the sea which has most effect on rainfall was considered. Then Automatic Weather Station data was used for spatial training of variables in each event. According to this, K-fold cross-validation method was combined with Adaptive Neuro-Fuzzy Inference System. Based on this, 80% of Automatic Weather Station data was used for training and validation of model and 20% was used for testing and evaluation of model. Finally, spatial distribution of precipitation for 1×1 km resolution in Gwangdeoksan radar station was estimates. The results showed a significant decrease in RMSE and an increase in correlation with the observed amount of precipitation.
기상조건은 통행자의 수단선택 행위에 큰 영향을 미친다. 본 연구는 기상조건에 따른 여러 교통현상에 대한 가설 중 강수 시 대중교통수단의 승객수가 감소한다는 연구 가설을 실증하기 위해 수행되었다. 이를 위해 본 연구는 최근 24개월 동안 관측된 부산의 버스, 도시철도, 마을버스의 일일 승객 수와 일일 강수량의 관계를 외견상 무관해 보이는 회귀모형(SUR 모형)을 이용하여 분석하였다. 분석결과 일일 강수량이 10mm 이상일 때는 강수량이 증가함에 따라 각 대중교통수단의 승객 수는 감소하는 것으로 나타났다(강수량 1mm 증가 시 시내버스, 도시철도, 마을버스 승객 수는 각각 0.169%, 0.101%, 0.172% 감소). 이처럼 부산의 대중교통수단의 승객 수는 일일 강수량이 10mm 이상인 날 감소하나 도시철도 승객 수 감소는 교차방정식 제약검정 결과 강수량 증가에 상대적으로 둔감한 것으로 나타났다. 그러나 도시철도 승객 수 추정식의 강수량 계수부호는 음수로 부산의 대중교통수단 이용객들은 10mm 이상의 강수일에는 접근, 대기, 환승에 불편이 있는 대중교통수단간 수단 전환보다는 좀 더 쾌적한 통행을 할 수 있는 택시나 승용차로 수단을 전환하거나 통행을 포기하는 경향이 두드러진다고 판단된다.
대부분의 수문모형에서 입력자료로 쓰이는 중요한 기상자료인 강우량의 변동성이 기후변화로 인해 커지고 있다. 수문변량의 변동성 분석은 수자원의 계획 및 운영에 매우 중요하다. 비교적 최근에 개발된 혁신적 다각 경향성 분석(IPTA)은 수문변량 등의 변동성을 분석하여 경향성을 확인하는데 유용하다. 본 연구에서는 전라도에 위치한 13개 기상관측소의 관측 강우량 자료 및 공통 사회경제 경로(SSP) 시나리오에 따른 강수량 자료에 대해 IPTA를 수행하여 월 강우량의 경향성을 분석하였고, 현재 실무에서 활용되는 Mann-Kendall 검정과 Sen's slope 추정 결과와 비교하였다. 그 결과, 대부분의 지점에서 2월부터 7월까지 그리고 11월의 강수량은 증가 경향을 보이고, 10월의 강수량은 감소 경향이 나타났다. 월 강수량에 대해 IPTA와 Mann-Kendall 검정 및 Sen's slope 추정은 156(13개 관측소 × 12개월) 시계열 중에서 각각 75.00 %, 5.13 %, 5.13 % 의 경향성을 감지하여, 상대적으로 IPTA가 경향성 감지에 더 민감하다는 것을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.