• Title/Summary/Keyword: Precious Metals

Search Result 93, Processing Time 0.021 seconds

A Study on Corrosion according to Distance between Amalgam and Dissimilar Metals (아말감과 이종(異種)금속의 거리에 따른 부식에 대한 고찰)

  • Kim, Ju-won;Jeong, Eun-gyeong
    • Journal of dental hygiene science
    • /
    • v.4 no.3
    • /
    • pp.103-109
    • /
    • 2004
  • The present study prepared 72 test samples - 24 made of amalgam alloy, 24 of Verabond (Ni-Cr alloy) for crown and 24 of Talladium $^{TM}alloy$ for denture - according to the manufacturers' manuals and general method in consideration of the width of the mesial-distal dental crown of the lower $1^{st}$ molar and MOD cavity in clinics, put them in a 200 ml beaker containing 80 ml of artificial saliva, and measured their galvanic corrosion at distances of 0 mm, 7 mm and 40 mm after 7 days. Isolated metals in the electrolyte such as Cu, Ag, Ni, Cr, Sn, Zn and Hg were quantitatively analyzed with Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES, JY-50P, VG Elemental Co. France), and from the results were drawn conclusions as follows. First, Cu, Sn, Ag, Hg and Zn were highly advantageous when amalgam contacted gold alloy compared to Ni-Cr alloy for crown and Talladium alloy for denture. In addition, although gold alloy was finest in terms of oral tissue and biocompatibility, it was most disadvantageous when it was with amalgam. Second, when amalgam contacted gold alloy, heavy metals such as Ni and Cr were not isolated at all because gold alloy did not contain such elements but Sn was isolated as much as $227.1{\pm}18.0035{\mu}g/cm^2$ although it was not included in the composition either. Hg was also isolated. These elements are assumed to have been isolated from amalgam itself. Third, when amalgam alloy was apart from gold alloy 0 mm, 7 mm and 40 mm, Cu and Ag showed significance but Hg did not. This suggests that gold alloy must not be used together with amalgam, and must not be used between dissimilar prostheses regardless of distance. Fourth, when amalgam alloy contacted Ni-Cr alloy for crown, Ag was not isolated from the amalgam, but Zn, Ni, Sn, Hg and Cu were isolated in order of quantity. Significance was observed according to distance - 0 mm, 7 mm and 40 mm. Hg was not isolated but heavy metals Ni and Cr were isolated. If amalgam alloy was in the opposite arch or it was apart from Ni-Cr alloy for crown, the isolation Hg was less than that when amalgam alloy contacted Ni-Cr alloy for crown. Fifth, when amalgam alloy contacted Talladium alloy for denture, significance was observed at distances of 0mm, 7 mm and 40 mm. Hg was not isolated but heavy metals Ni and Cr were isolated. If amalgam alloy was in the opposite arch or it was apart from Talladium alloy for denture, the isolation Hg was less than that when amalgam alloy contacted Talladium alloy for denture. Sixth, according to the result of ICPES test on Cu, Sn, Ag, Hg, Zn, Ni and Cr of amalgam alloy, gold ally, Verabond and Talladium alloy when these alloys contacted artificial saliva, significance was observed in Cu and Hg. Seventh, when amalgam alloy contracted two non-precious metals Ni-Cr alloy for crown and Talladium alloy for denture in artificial saliva, significance was observed in the isolated by-products of Hg, Ni and Cr according to distance.

  • PDF

The Transition of Production, Consumption and Price of Non-ferrous Metals (비철금속(非鐵金屬)의 생산(生産), 소비(消費), 시세(時勢)의 추이(推移))

  • Moon, W.J.
    • Economic and Environmental Geology
    • /
    • v.2 no.3
    • /
    • pp.1-25
    • /
    • 1969
  • In considering the mining industry, it is necessary to study the production, consumption and price of ore and metals in every country of the world in order to determine the trend of the industry in the present and for the future. This study is necessary especially for exporting domestically produced are which is in excess of domestic consumption and for importing are, or metal where local production does not meet domestic demand. It will be treated of Au, Ag, Cu, Pb, Zn, W, Mo, which are the most important non-ferrous metals, and which greatly affect the mining industry of Korea. The presentation will concern itself only with the free world. About 1, 200 ton of gold are produced annually with little fluctiation in recent years. Most of the gold produced is consumed by advanced countries for industrial uses as well as for producing precious objects. The U.S.A. expends yearly about four times its domestic production and Japan about three times its domestic production for industry and arts. Because of the instability of the currency of the U.S.A., England and France, recently, the price of gold has been $ 41-42 per ounce, whereas the official price is $35.00 per ounce. It will be expected that the official price will be raised in the near future. As for silver, about 6,500 tons are produced annually with no special fluctuation change in recent years. However, the annual consumption is about 14,000 ton, so the supply and demand is extremely unbalanced. The shortage is made up by the sale of the U.S. treasury's reserve stock and the reclaiminig of silver from coins and other scrap. As the Treasury'S reserves will be exhausted in a year or two, the price of silver which is $1. 64 per ounce, will go up drastically in about a year. As for copper, 5,257,000 ton's were mined in 1966. It's production is being increased about 5% annually. However, consumption exceeds production by about 100,000 ton a year. The recent Foreign refinery copper price in the U.S.A is $ 60 per pound. The supply of copper being insufficient to meet international demands, the price will go up and with no prospect of being lowered in the near future even with the slight annual increase in production. About 2,100,000 to 2,200,000 tons of lead are produced annually. Consumption exceeds production by about 50,000-60,000 tons annually. The current price of lead in New York is $ 155 per pound. As the supply of lead is internationally stable, It will be believed that there will be no significant change in its price in the near future. In 1967, 3,926,000 tons of Zinc were produced. There is annual increase of 4-7% in production. The annual consumption exceeds production by 100,000 to 200,000 tons. The current zinc price in the St. Louis market inthe U.S.A. is $ 145 per pound. Even though its supply is stable and sufficient world wide, the consumption rate will increase at a faster pace than before; hence, the price will slowly go up. Tungsten mines yield about 11,000 tons a year. Its production has been relatively constant in the past few years. The amount of its consumption increases slowly world wide, but in the free world· there has been a slight annual decrease. However, since Red China has not been exporting their tungsten to other countries for several months, the price on the London market of S.T.U. of $Wo_3$ has increased to $ 44~46. Should Red China begin to export actively again the price will drop to $ 40~42. In 1967, 56,000 tons of Molybdenum were produced. Production exceeds consumption by 200,000 -30,000 tons annually. The current price in the U.S.A. is $ 1.72 per Mo pound. Since the rate of production in the U.S.A. is on the increase with large amounts of ore reserve, the price of molubdenum should not go up.

  • PDF

Characteristics of fresh mortar with particle size and replacement ratio of copper slag (동제련 슬래그의 입도 및 잔골재 치환율 변화에 따른 시멘트 모르타르의 특성)

  • Hong, Chang Woo;Lee, Jung-Il;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.41-48
    • /
    • 2016
  • It is estimated that over 2 million tons of non-ferrous wastes are generated after refining. Up to now, most researches were focused on extracting precious metals and there were very few research on the utilization of the slag byproduct. In this study, we studied to evaluate whether copper slag could be used as aggregates in concrete. Fresh mortar were evaluated on the particle size and replacement ratio of the copper slag with river-sand. Experimental results indicated that flow, air content and drying shrinkage of concrete varied with particle size, which confirmed that proper classification of copper slag is very important. And, setting time and unit weight of the concrete increased with replacement ratio. When particle size of the slag was similar to the river-sand, concrete with copper slag showed slump, air content, setting time, drying shrinkage and unit weight became larger compared to the concrete using river-sand only. Therefore, it is believed that proper classification and replacement ratio should be optimized for the effective use of slag in concrete.

Catalytic Oxidation of Vinyl Chloride on Chromium Oxide Catalysts (크롬 산화물 촉매를 이용한 Vinyl Chloride의 산화 분해반응)

  • Lee, Hae-Wan;Kim, Young Chai;Moon, Sei-Ki
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.58-66
    • /
    • 1999
  • The catalytic oxidation of vinyl chloride was investigated over $CrO_x$ impregnated on $Al_2O_3$ at temperature between 200 and $400^{\circ}C$. The major carbonaceous products were CO and $CO_2$, and the selectivity of $CO_2$ was gradually increased with increasing reaction temperature, while that of CO was dropped consequently. This suggests that CO is the first product which is further oxidized to $CO_2$ in the oxidation of vinyl chloride over $CrO_x/Al_2O_3$. The addition of HCl in the feed didn't affect the conversion of vinyl chloride, but the selectivity of $CO_2$ decreased by adding HCl. It implies that HCl inhibits, the complete oxidation of vinyl chloride to $CO_2$. When oxidizing vinyl chloride in dry air, significant amounts of $Cl_2$ were observed, while no $Cl_2$ was detected in the humid condition. The activities of several catalysts including various precious metals and other transition metal oxides were measured, it was found that the catalytic activity of 12% $CrO_x/Al_2O_3$ was higher than other catalysts except 1% $Pt/Al_2O_3$. The reaction rate of 12% $CrO_x/Al_2O_3$ was 1.2 times lower than that of 1% Pt/alumina, but it was 3 to 8 times more active than other catalysts for vinyl chloride oxidation at $275^{\circ}C$.

  • PDF

The Study on living Art and Costumes Culture of the Middle-Age Europe (중세유럽의 생활미술과 복식문화에 관한 연구)

  • 이순홍
    • Journal of the Korean Society of Costume
    • /
    • v.35
    • /
    • pp.17-44
    • /
    • 1997
  • Medieval European practical art and style of costume is studied through referring to the literatures. The type of clothing that was seen on tapestries arts and crafts paintings and wall paintings and appeared in the architecture such as church. There were symbolic aspects of color motifs at this period and some restraints for clothing according to the social class, It was a period that draped garments due to the War of Crusades is appeared. Be-cause the medieval taste and decorative character is not only 'formative art' but also the taste beyoud 'mode' and atomsphere of that times it could be seen the strong reflec-tion of customs in the clothing of that times which is shown in works of art. 1) The purpose of Christian art which was found in mosaics stained glasses wall pain-tings and statues of architecture was not just the revival of natural phenomena but visuali-zation of sacred and invisible things. It was valuable to understandin of the spiritual through the sense organ It was a monumental art that was combined with decorative func-tion and role of the Bible. It revealed what was about the religious spiritual miracle, 2) In the medieval European painting characteristic and beautiful creativity was the basis of an argument. Both "Worship of East-ern" that is painted ion a parchment and "Cor-onation of Charles VI" were described decor-ation motifs on the edge of buildings geo-metric patterns and others with outstanding skill. there were precise technologic skill of architect and glassmen and lots of patience of craftsmen. " The Labour of the Months" and the scene of"A Trial at the Court" is also de-scribed elaborately. 3) Tapestry was developed in France Ger-many Swiss at the 14th century. Religionary and historical themes unicorn lady bird flowering plants and others were major motifs. It was very important as decorative wall coverings and as practical door arch and bed hangings. It was made through patient hard work with simple technique and it was con-sidered as an art for practical use. Tapestry was what everyone wish to have. It is reckoned for the item of the best gift. The royalty and nobility ordered and used custom-made tapestries. Sometimes the subject of motifs consisted of series which were deeply related to living 4) Decorative arts and crafts was the art that used materials such as precious metals jewels and others and that accorded with the luxurious and gorgeous taste of the royalty and nobility. Christian considered splendid and beautiful color of light as a symbol of glory. They used also for church appliances, There were metal crafts wood crafts textile crafts and others, As was stated above the costume appeared on the arts and crafts for living revealed the process of changes saw how the politic econ-omic and social organizations were developed.and social organizations were developed.

  • PDF

Characteristics and Fate of Stormwater Runoff Pollutants in Constructed Wetlands (도시지역에 적용가능한 인공습지에서의 강우유출수 함유 오염물질의 거동과 특성)

  • Alihan, Jawara Christian;Maniquiz-Redillas, Marla;Choi, Jiyeon;Flores, Precious Eureka;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Nonpoint source (NPS) pollution continues to degrade the water quality. NPS pollutants signals high concerns against a sustainable environment. Low impact development (LID) is the leading management practice which regulates and treats stormwater runoff especially in highly impervious urban areas. Constructed wetlands are known to have efficient removal capability of NPS pollutants. Likewise, these LID facilities were intended to maintain the predeveloped hydrologic regime through series of mechanisms such as particle settling, filtration, plant uptake, and etc. In this study, the objective was to investigate the characteristics, fate and treatment performance of the two in-campus constructed wetlands (SW1 and SW2) which were installed adjacent to impervious roads and parking lots to treat stormwater runoff. A total of 42 storm events were monitored starting from July 2010 until November 2015. Manual grab sampling was utilized at the inlet and outlet units of each LID facilities. Based on the results, the wetlands were found to be effective in reducing 37% and 41% of the total runoff volume and peak flows, respectively. Aside from this, outflow EMCs were generally lower than the inflow EMCs in most events suggesting that the two wetlands improved the water quality of stormwater runoff. The average removal efficiency of pollutants in facilities were 63~79% in TSS, 38~54% in TN, 54% in TP and 32%~81% in metals. The results of this study recommend the use of constructed wetlands as efficient treatment facility for urban areas for its satisfactory performance in runoff and pollutant reduction.

Hydrologic and Environmental Assessment of an Infiltration Planter for Roof Runoff Use (지붕 빗물이용을 위하여 개발된 침투화분의 환경·수문학적 평가)

  • Moon, So-Yeon;Choi, Ji-Yeon;Hong, Jung-Sun;Yu, Gi-Gyung;Jeon, Je-Chan;Flores, Precious Eureka D.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2015
  • Due to urbanization and increase in impervious area, changes in natural water circulation system have become a cause of groundwater recharge reduction, streamflow depletion and other hydrological problems. Therefore, this study developed the infiltration planter techniques applied in an LID facility treating roof stormwater runoff such as, performance of small decentralized retention and infiltration through the reproduction of natural water circulation system and use of landscape for cleaning water. Assessment of an infiltration planter was performed through rainfall monitoring to analyze the water balance and pollutant removal efficiency. Hydrologic assessment of an infiltration planter, showed a delay in time of effluent for roof runoff for about 3 hours and on average, 79% of facilities had a runoff reduction through retention and infiltration. Based on the analysis, pollutant removal efficiency generated in the catchment area showed an average of 97% for the particulate matter, 94% for the organic matter and 86-96% and 92-93% for the nutrients and heavy metals were treated, respectively. Comparative results with other LID facilities were made. For this study, facilities compared the SA/CA to high pollutant removal efficiency for the determination to of the effectiveness of the facility when applied in an urban area.

The Effect of Pt and La Promoted on Cobalt-Based Catalyst for CO2 Dry Reforming (이산화탄소 건식 개질반응을 위한 코발트계 촉매에서 Pt와 La의 영향)

  • Lee, Hye-Hyun;Song, Sang-Hoon;Chang, Tae-Sun;Hong, Ji-Sook;Suh, Jeong-Kwon;Lee, Chang-Yong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.161-166
    • /
    • 2011
  • The $CO_2$ dry reforming reaction, which converts carbon dioxide to hydrogen and carbon monoxide, is typical endothermic reaction, and also known as adverse reaction owing to thermodynamics. In order to overcome the problem, the development studies of suitable catalyst based on precious metals for high durability of thermal and optimization of life time have been examined but it had economical problem by high cost. In this study, we confirmed optimum contents of Pt and La with such different contents of Pt (0.02~0.2 wt%) or La (2~20 wt%) over $Co/SiO_2$ which prepared for excellent activity and cost-effective catalysts. As a result, the promoted catalysts with 0.04 wt% Pt or 9 wt% La over $Co/SiO_2$ showed the highest activity which is 57% and 55% $CO_2$ conversion respectively. Also, the particle size of cobalt on the promoted catalysts with 0.04 wt% Pt or 9 wt% La by characterization of catalyst could confirm the smallest particle size in this study. Therefore, it could know that particle size of cobalt had effected the stability and reactivity of catalysts due to the contents of Pt and La.

A Review on Mineralogical and Geochemical Characteristics of Seafloor Massive Sulfide Deposits in Mid-Ocean Ridge and Volcanic Arc Settings: Water-Rock Interaction and Magmatic Contribution (중앙해령 및 섭입대 화산호 지역 해저열수광상의 광물·지구화학적 특성 고찰: 물-암석 상호작용 및 마그마 영향)

  • Choi, Sun Ki
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.465-475
    • /
    • 2022
  • The seafloor massive sulfide deposits are important mineral resources for base and precious metals, and their ore genesis and metal contents are mainly controlled by wall-rock leaching process and/or magmatic volatile input from the underlying magma chamber. However, the contribution of two different metal sources to the seafloor hydrothermal mineralization significantly varies in diverse geological settings and thus still remains controversial. In this review, mineralogical and geochemical characteristics of SMS deposits from mid-ocean ridges (MORs) and volcanic arcs were investigated to understand the contribution from different metal sources and to suggest future challenges that need to be addressed. As a result, the genetic occurrences of enargite and cubanite, galena and barite indicate the effects of magmatic input and water-rock interaction, respectively. Also, the distributional behaviors of Co, As, and Hg in pyrite and FeS content of sphalerite could be useful empirical indicators to discriminate the significant roles of different metal sources between MOR and Arc settings. To date, as most studies have focused on sulfide samples recovered from the seabed, further studies on magmatic sulfides and sulfate minerals are required to fully understand the genetic history of SMS deposits.

A Pilot Establishment of the Job-Exposure Matrix of Lead Using the Standard Process Code of Nationwide Exposure Databases in Korea

  • Ju-Hyun Park;Sangjun Choi;Dong-Hee Koh;Dae Sung Lim;Hwan-Cheol Kim;Sang-Gil Lee;Jihye Lee;Ji Seon Lim;Yeji Sung;Kyoung Yoon Ko;Donguk Park
    • Safety and Health at Work
    • /
    • v.13 no.4
    • /
    • pp.493-499
    • /
    • 2022
  • Background: The purpose of this study is to construct a job-exposure matrix for lead that accounts for industry and work processes within industries using a nationwide exposure database. Methods: We used the work environment measurement data (WEMD) of lead monitored nationwide from 2015 to 2016. Industrial hygienists standardized the work process codes in the database to 37 standard process and extracted key index words for each process. A total of 37 standardized process codes were allocated to each measurement based on an automated key word search based on the degree of agreement between the measurement information and the standard process index. Summary statistics, including the arithmetic mean, geometric mean, and 95th percentile level (X95), was calculated according to industry, process, and industry process. Using statistical parameters of contrast and precision, we compared the similarity of exposure groups by industry, process, and industry process. Results: The exposure intensity of lead was estimated for 583 exposure groups combined with 128 industry and 35 process. The X95 value of the "casting" process of the "manufacture of basic precious and non-ferrous metals" industry was 53.29 ㎍/m3, exceeding the occupational exposure limit of 50 ㎍/m3. Regardless of the limitation of the minimum number of samples in the exposure group, higher contrast was observed when the exposure groups were by industry process than by industry or process. Conclusion: We evaluated the exposure intensities of lead by combination of industry and process. The results will be helpful in determining more accurate information regarding exposure in lead-related epidemiological studies.