• Title/Summary/Keyword: Precast concrete-panel

Search Result 125, Processing Time 0.023 seconds

Evaluation of Drainage Capacity of Precast Concrete-panel Retaining Wall Attached to In-situ Ground Using Numerical Analysis (수치해석을 이용한 원지반 부착식 판넬옹벽의 투수성 평가)

  • Kwon, Youg Kyu;Lee, Jae Won;Hwang, Young-cheol;Ban, Hoki;Lee, Minjae
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.3
    • /
    • pp.43-50
    • /
    • 2021
  • On the construction of new roads, the cut slope is inevitable and thus has been widely applied in the mountainous area. Particularly, the retaining wall with the precast concrete panel is often selected for its higher stability and mostly constructed in bottom-up method. However, the bottom-up method results in steeper slope as 1:0.05 before constructiong retaining wall and thus causes poor compaction at backfill which may induce instability during or after the construction. To overcome this problem, precast concrete panel retaining wall was attached in-situ ground (so called top-down). This paper presents the evaluation of drainage capacity of top-down method which has impermeable layer between panel and mortar being used to increase the ability of attachment of the precast concrete panel.

Development of Short-span Precast Concrete Panels for Railway Bridge (철도교용 단지간 프리캐스트 콘크리트패널의 개발)

  • Seol, Dae-Ho;Lee, Kyoung-Chan;Kim, Ki-Hyun;Youn, Seok-Goo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.545-553
    • /
    • 2016
  • This paper presents experimental static test results of the precast concrete panels developed for short-span concrete bridge deck form. Different from LB-DECK, concrete rib attached to the bottom surface of concrete panel, and Top-bar is not used at the top surface of concrete panel. Number of concrete ribs and cross-section details of concrete rib are determined from the analytical results of parametric study considering the span length and the thickness of concrete bridge decks. Shear rebars are installed at the top surface of concrete panel for composite action between precast concrete panel and cast-in-place concrete. In order to evaluate the safety and the serviceability of the developed short-span concrete panel subjected to design load, static load test is conducted. Three test panels with span length of 1.6m are fabricated, and during the load test displacements, strains and cracks of test panels are measured and final failure modes are investigated. Serviceability of the test panels is evaluated based on the results of displacements, cracking load, and crack width at the design load level. Safety is also evaluated based on the comparison of the ultimate strength and the factored design load of test panels. Based on the test results, it is confirmed the short-span precast concrete panel satisfies the serviceability and safety regulated in design codes. In addition, the range of span length of concrete bridge decks for the short-span concrete panel is discussed.

A Experimental Study on the Shear Resistant Characteristics of the Large Precast Concrete Panel Structures (조립식 콘크리트 대형판구조물의 접합부 전단내력특성에 관한 실험적 고찰)

  • 송영훈;전상우;윤정배;정일영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.237-242
    • /
    • 1993
  • Precast concrete panel buildings are designed to tracsmit shear forces through the joint between the reinforced concrete panels. The shear strength is partly provided by the resistance to sliding at the interface between the precast and in- situ concrete and partly by the dowel action of the reinforcement crossing the joint. The shear resistance to sliding is largely dependent on the shapes and configurations of vertical joints and the vertical loads of horizontal joints. In this paper, the shear strength by the difference of relative strength between panel and joint, the effect of reinforcement, and the effect of vertical load are considered.

  • PDF

Racking shear resistance of steel frames with corner connected precast concrete infill panels

  • Hoenderkamp, J.C.D.;Snijder, H.H.;Hofmeyer, H.
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1403-1419
    • /
    • 2015
  • When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on the quality, quantity and location of the discrete interface connections. This paper presents preliminary experimental and finite element results of an investigation into the composite behaviour of a square steel frame with a precast concrete infill panel subject to lateral loading. The panel is connected at the corners to the ends of the top and bottom beams. The Frame-to-Panel-Connection, FPC4 between steel beam and concrete panel consists of two parts. A T-section with five achor bars welded to the top of the flange is cast in at the panel corner at a forty five degree angle. The triangularly shaped web of the T-section is reinforced against local buckling with a stiffener plate. The second part consists of a triangular gusset plate which is welded to the beam flange. Two bolts acting in shear connect the gusset plate to the web of the T-section. This way the connection can act in tension or compression. Experimental pull-out tests on individual connections allowed their load deflection characteristics to be established. A full scale experiment was performed on a one-storey one-bay 3 by 3 m infilled frame structure which was horizontally loaded at the top. With the characteristics of the frame-to-panel connections obtained from the experiments on individual connections, finite element analyses were performed on the infilled frame structures taking geometric and material non-linear behaviour of the structural components into account. The finite element model yields reasonably accurate results. This allows the model to be used for further parametric studies.

Dynamic Analysis of Precast Concrete Large Panel Structures with Horizontal Joints (수평 접합부를 고려한 프리캐스트 대형판 구조물의 동적 해석에 관한 연구)

  • 정일영;송진규;강해관
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.249-257
    • /
    • 1996
  • Dynamic Analysis of Precast Concrete Large Panel Structures with Horizontal Joints The damage in precast large panel structures subjected to destructive earthquakes is generally localized in the joints. Particularly, the horizontal joints influence on the stability and integrity of the overall structure. In this research a dynamic analysis was carried out by the macro model that idealized the horizontal joints as inelastic-nonlinear spring systems. It is capable of simulating the behavior of precast concrete structures using the mathematical model. As a result of the dynamic parametric study for the case of 0.12g peak base accelerations, it is found that all joints behave elastically for sliding and opening and that all forces are well distributed without excessive local concentration on my horizontal joints.

  • PDF

A Experimental Study on Structural Behavior of Hybrid Precast Concrete Panel (복합 프리캐스트 콘크리트 패널의 구조 거동에 대한 실험적 연구)

  • Lee, Sang-Sup;Park, Keum-Sung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.9
    • /
    • pp.11-18
    • /
    • 2018
  • As the height of the modular buildings increases, their stability becomes more and more dependent on the core. All traditional construction methods in structural concrete and steel can be utilized for cores in modular buildings but a core system with dry connection is more desirable to complete a greater degree of factory finish and faster erection of modular buildings. In order to do that, the hybrid PC(precast concrete) panel, which has a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, was developed, In this study the cyclic lateral loading test on the hybrid PC panel is carried out and the panel configurations are examined to enhance the structural performance in comparison with the RC wall. Experimental results show that the strength of hybrid PC panel is about 70% of thar ot RC wall and the anchorage of vertical reinforcing bar welded to C-shaped steel beam needs to be improved.

Development of Finishing Panel using Surface Treatment Method (표면처리공법을 활용한 마감 패널 개발)

  • Kim, Kang-Min;Yoon, Seob;Kwan, Hae-Won;Gong, Min-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.57-58
    • /
    • 2019
  • Precast concrete finishing panels can be implemented in different colors, textures and designs relatively freely by different designers in different finishing materials. Therefore, we tried to develop a PC finishing panel that can be applied in the field by using various color pigment and concrete surface retardation method and polishing method.

  • PDF

Evaluation of Field Application of Precast Concrete-panel Retaining Wall attached to In-Situ Ground Using Field Test and Numerical Analysis (현장시험 및 수치해석 분석을 통한 원지반 부착식 판넬옹벽의 현장 적용성 평가)

  • Kwon, Yong Kyu;Min, Kyoung-nam;Hwang, Young-cheol;Ban, Hoki;Lee, Minjae
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.99-106
    • /
    • 2020
  • Man-made slope is inevitable to make a new road, which may result in environmental problems as well as collapse of slope. To prevent these problems, various methods such as geogrid reinforced retaining wall, precast concrete-panel retaining wall, and so on, have been introduced and developed. Among these methods, this paper presents the evaluation of field application of precast concrete-panel retaining wall attached to in-situ ground (so called top-down) compared to the conventional construction method of precast concrete-panel retaining wall (so called bottom-up) through the field test and numerical analysis. As a result, the safety factor of both methods in final stage is similar, however, top-down method guarantees the slope stability during the construction compared to bottom-up method.

A Study to select the optimum size for the panel of the precast slab track system (프리캐스트 슬래브궤도 패널의 최적규격 선정을 위한 연구)

  • Kim, Yoo-Bong;Moon, Do-Young;Beak, In-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.740-744
    • /
    • 2011
  • Precast slab track system(PSTS) is a concrete track laying system where the slab panels are pre-manufactured in factories and assembled and installed on-site. PSTS has been developed for the past 30 years in countries where railway technologies are advanced such as Japan and Germany to improve the various drawbacks of the in-situ concrete slab track. However, the usefulness of PSTS is being continuously approved by many other countries such as China, Taiwan, Austria, Italy, Spain, etc,. Lately, not only Japan and Germany, but also Austria, Italy and China have developed their own PSTS by collaboration between their Governments and private enterprises and are now attempting to expand their businesse soverseas. In accordance to such movement, in 2006, the Korean Railroad Research Institution and Sampyo E&C have developed a Korean PSTS by joint research. PSTS consists of concrete panel, under pouring layer and concrete base layer. Amongst these components, the panel is the main component of PSTS which supports the train load and has a great effect on the track quality, workability and economics. Therefore, a study is to be conducted to select the optimum size for the Panel of the precast slab track system panel by analyzing the various standards & forms, interpretation of finite elements of the selected model and economical analysis.

  • PDF

Quantitative Analysis on Effective Stiffness of Horizontal Joints in Precast Concrete Large Panel Structures (P.C. 대형판 구조물의 수평접합부 유효강성에 대한 정량적 분석)

  • 이한선;장극관;신영식
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.142-151
    • /
    • 1994
  • Though stiffnesses of joints in precast concrete(P.C.) large panel structures are known to be generally less than those in monolithic reinforced concrete wall structures, designers have very little information on the quantitative values with regards to these stiffnesses. The aim of this paper is to provide this quantitative information, in particular, on the compressive stiffness of horizontal joints, based on the analytical results derived from several experiments. Also, it is shown that the approach from the contact problem to determine this stiffness gives a value very simlar to those obtained above.