• Title/Summary/Keyword: Precast concrete structure

Search Result 219, Processing Time 0.024 seconds

Influence of the stiffness of Vertical Joints on the Behaviour of Precast Shear Walls. Part1. Load Case 1 (연직접합(鉛直接合)의 강성(剛性)이 프리케스트 전단벽(剪斷壁)의 구조적거동(構造的擧動)에 미치는 영향(影響) I. 하중조합(荷重組合) 1에 대하여)

  • Park, Kyung-Ho
    • Journal of Industrial Technology
    • /
    • v.3
    • /
    • pp.103-116
    • /
    • 1983
  • Recent developments in multi-storey buildings for residential purpose have led to the extensive use of shear walls for the basic structural system. When the coupled shear wall system is used, joined together with cast-in-place concrete or mortar (or grout), the function of the continuous joints is a crucial factor in determining the safety of L.P. Precast concrete shear wall structures, because the function of the continuous joints(Vertical wall to wall joints) is to transfer froces from one element(shear wall panel) to another, and if sufficient strength and ductility is not developed in the continuous joints, the available strength in the adjoining elements may not be fully utilized. In this paper, the influence of the stiffness of vertical joints(wet vertical keyed shear joints) on the behaviour of precast shear walls is theoretically investigated. To define how the stiffness of the vertical joints affect the load carrying capacity of L.P.Precast concrete shear wall structure, the L.P.Precast concrete shear wall structure is analyzed, with the stiffness of the vertical joints varying from $K=0.07kg/mm^3$(50MN/m/m) to $K=1.43kg/mm^3$(1000MN/m/m), by using the continuous connection method. The results of the analysis shows that at the low values of the vertical stiffness, i.e. from $K=0.07kg/mm^3$(50MN/m/m) to $K=0.57kg/mm^3$(400MN/m/m), the resisting bending moment and shearing force of precast shear walls, the resisting shearing force of vertical joints and connecting beams are significantly affected. The detailed results of analysis are represented in the following figures and Tables.

  • PDF

Numerical simulation by the finite element method of the constructive steps of a precast prestressed segmental bridge

  • Gabriela G., Machado;Americo Campos, Filho;Paula M., Lazzari;Bruna M., Lazzari;Alexandre R., Pacheco
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.163-177
    • /
    • 2023
  • The design of segmental bridges, a structure that typically employs precast prestressed concrete elements and the balanced cantilever construction method for the deck, may demand a highly complex structural analysis for increased precision of the results. This work presents a comprehensive numerical analysis of a 3D finite element model using the software ANSYS, version 21.2, to simulate the constructive deck stages of the New Guaiba Bridge, a structure located in Porto Alegre city, southern Brazil. The materials concrete and steel were considered viscoelastic. The concrete used a Generalized Kelvin model, with subroutines written in FORTRAN and added to the main model through the customization tool UPF (User Programmable Features). The steel prestressing tendons used a Generalized Maxwell model available in ANSYS. The balanced cantilever constructive steps of a span of the New Guaiba Bridge were then numerically simulated to follow the actual constructive sequence of the bridge. A comparison between the results obtained with the numerical model and the actual vertical displacement data monitored during the bridge's construction was carried out, showing a good correlation.

An Application of Precast Concrete System for Steel Framed Residential Buildings and PC Framed System for Parking Structure (철골조 아파트의 PC 공법 적용성 및 지하주차장의 골조 PC 공법)

  • 김영수;김정연;임인혁;김두영;장월선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.903-910
    • /
    • 2000
  • Because the construction type SFRB is completely different in comparison with that of RC apartment the construction and work process, which are currently used, have to be changed. The main purpose of study is to analyze the difficulties of this construction and to apply the technology for other construction area. In this study, it is investigated to the problems of construction for SFRB and the construction method of PC panel fabricated on SFRB in Yongin goosng. Later, it is estimated prefabricated method had an great effect on PC panel System as lower cost and shorter schedule in SFRB. The Precast concrete framed System has many merit than the reinforced concrete structures system at constructability, structural safety and quality, therefore, it will be widely applied at parking structure in the future.

  • PDF

Seismic Behavior Investigation on Blind Bolted CFST Frames with Precast SCWPs

  • Wang, Jingfeng;Shen, Qihan;Li, Beibei
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1666-1683
    • /
    • 2018
  • To explore seismic behavior of blind bolted concrete-filled steel tube (CFST) frames infilled with precast sandwich composite wall panels (SCWPs), a series tests of blind bolted square CFST frames with precast SCWPs under lateral low-cyclic loading were conducted. The influence of the type of wall concrete, wall-to-frame connection and steel brace setting, etc. on the hysteretic curves and failure modes of the type of composite structure was investigated. The seismic behavior of the blind bolted CFST frames with precast SCWPs was evaluated in terms of lateral load-displacement relation curves, strength and stiffness degradation, crack patterns of SCWPs, energy dissipation capacity and ductility. Then, a finite element (FE) analysis modeling using ABAQUS software was developed in considering the nonlinear material properties and complex components interaction. Comparison indicated that the FE analytical results coincided well with the test results. Both the experimental and numerical results indicated that setting the external precast SCWPs could heighten the load carrying capacities and rigidities of the blind bolted CFST frames by using reasonable connectors between frame and SCWPs. These experimental studies and FE analysis would enable improvement in the practical design of the SCWPs in fabricated CFST structure buildings.

Modelling and integrity assessment of shear connectors in precast cast-in-situ concrete bridges

  • Moyo, Pilate;Sibanda, Bongani;Beushausen, Hans
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.55-72
    • /
    • 2012
  • Precast-cast insitu concrete bridge construction is widely practiced for small to medium span structures. These bridges consist of precast pre-stressed concrete beams of various cross-sections with a cast in-situ reinforced concrete slab. The connection between the beams and the slab is via shear links often included during the manufacturing process of the beams. This form of construction is attractive as it provides for standardisation, reduced formwork and construction time. The assessment of the integrity of shear connectors in existing bridges is a major challenge. A procedure for assessment of shear connectors based on vibration testing and finite element model updating is proposed. The technique is applied successfully to a scaled model bridge model and an existing bridge structure.

Experimental study on shear performance of partially precast Castellated Steel Reinforced Concrete (CPSRC) beams

  • Yang, Yong;Yu, Yunlong;Guo, Yuxiang;Roeder, Charles W.;Xue, Yicong;Shao, Yongjian
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.289-302
    • /
    • 2016
  • A new kind of partially precast or prefabricated castellated steel reinforced concrete beam, which is abbreviated here as CPSRC beam, was presented and introduced in this paper. This kind of CPSRC beam is composed of a precast outer-part and a cast-in-place inner-part. The precast outer-part is composed of an encased castellated steel shape, reinforcement bars and high performance concrete. The cast-in-place inner-part is made of common strength concrete, and is casted with the floor slabs simultaneously. In order to investigate the shear performance of the CPSRC beam, experiments of six CPSRC T-beam specimens, together with experiments of one cast-in-place SRC control T-beam specimen were conducted. All the specimens were subjected to sagging bending moment (or positive moment). In the tests, the influence of casting different strength of concrete in the cross section on the shear performance of the PPSRC beam was firstly emphasized, and the effect of the shear span-to-depth ratio on that were also especially taken into account too. During the tests, the shear force-deflection curves were recorded, while the strains of concrete, the steel shapes as well as the reinforcement stirrups at the shear zone of the specimens were also measured, and the crack propagation pattern together with the failure pattern was as well observed in detail. Based on the test results, the shear failure mechanism was clearly revealed, and the effect of the concrete strength and shear span-to-depth ratios were investigated. The shear capacity of such kind of CPSRC was furthermore discussed, and the influences of the holes on the steel shape on the shear performance were particularly analyzed.

Seismic performance of precast joint in assembled monolithic station: effect of assembled seam shape and position

  • Liu, Hongtao;Du, Xiuli
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.611-621
    • /
    • 2019
  • Precast concrete structure has many advantages, but the assembled seam will affect potentially the overall seismic performance of structure. Based on the sidewall joint located in the bottom of assembled monolithic subway station, the main objectives of this study are, on one hand to present an experimental campaign on the seismic behavior of precast sidewall joint (PWJ) and cast-in-place sidewall joint (CWJ) subjected to low-cycle repeated loading, and on the other hand to explore the effect of shape and position of assembled seam on load carrying capacity and crack width of precast sidewall joint. Two full-scale specimens were designed and tested. The important index of failure pattern, loading carrying capacity, deformation performance and crack width were evaluated and compared. Based on the test results, a series of different height and variably-shape of assembled seam of precast sidewall joint were considered. The test and numerical investigations indicate that, (1) the carrying capacity and deformation capacity of precast sidewall and cast-in-place sidewall were very similar, but the crack failure pattern, bending deformation and shearing deformation in the plastic hinge zone were different obviously; (2) the influence of the assembled seam should be considered when precast underground structures located in the aquifer water-bearing stratum; (3) the optimal assembled seam shape and position can be suggested for the design of precast underground concrete structures according to the analysis results.

Experimental Study of In-situ Production of Precast Concrete Members

  • Lim, Jeeyoung;Son, Seunghyun;Kim, Jeong Tai;Kim, Sunkuk
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.263-270
    • /
    • 2017
  • The precast concrete (PC) structure has been preferred for reasons of shortening the construction time and securing the quality and, in particular, it has a cost saving effect in case of long span and heavy loaded structure with high floor height. Most engineers take it for granted to install the plant produced PC members. Researchers in several papers have argued that slander PC members such as columns and girders can be cost-effective if in-situ production is possible, while ensuring quality equal to or better than in-plant production. However, this argument is not officially accepted because objective verification has not been done. Therefore, the purpose of this study is to experimentally conduct in-situ production of PC members to verify the above claim. For this study, a storage building with long span and heavy loaded structure with high floor height was selected as a case study site. For the site, most of the PC members were supplied from the plant, and some of the columns were produced in the site for this study. As a result, it has been confirmed that it has a cost saving effect of 20% while having superior quality to plant-produced PC columns.

  • PDF

Stress Analysis of Precast Concrete Large Panel Structures Taking Account of Stiffness of Vertical Joints (수직접합부 강성을 고려한 프리캐스트 콘크리트 대형판구조물의 응력해석)

  • 장극관;이한선;신영식;류진호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.149-156
    • /
    • 1993
  • Precast concrete (P.C.) large panel structures have usually weaker stiffness at joints than that of monolithic in-situ reinforced concrete structures. But structural designers do not in general take into account this characteristics of P. C. large panel structures and use the same analytical models as for the monolithic structure. Therefore, the results of analysis obtained by using these models may be quite different from those actually occuring in real P.C. structure. In this study, the change in force and stress distribution and deflections of structure caused by applying lower shear stiffness at vertical joints are investigated through trying several finite element modeling schemes specific for P.C. structures. Finally, for engineers in practice. a simplified model, which takes account of the effect of lower shear stiffness at vertical joints, is proposed with the understanding on possible amount of errors.

  • PDF