• Title/Summary/Keyword: Preamble correlation

Search Result 33, Processing Time 0.021 seconds

Adaptive Modulation Method using Flexible PPM Method in WPAN LR-UWB System (WPAN LR-UWB 시스템에서 유동적인 PPM 방식을 이용한 적응적인 변복조 방법)

  • Choi, Nak-Hyun;Hwang, Jae-Ho;Kim, Joo-Kyung;Kim, Jae-Moung
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.91-92
    • /
    • 2007
  • LR-UWB utilizes BPSK and PPM for the transmission, which embeds the information in the transmitted pulse position. Meanwhile, by using coherent method, there is approximately 3dB enhancement on the BER performance over that using non-coherent method. However, due to the variable channel conditions, conventional system which uses fixed modulation is not efficient. To maximize the efficient and performance, in this paper, we propose an adaptive method including 4PPM+BPSK mode and 2PPM mode, in which the modulation method is dynamically changed depending on the channel condition which is determined according to the preamble correlation output.

  • PDF

Performance Comparison of Coherent and Non-Coherent Detection Schemes in LR-UWB System

  • Kwon, Soonkoo;Ji, Sinae;Kim, Jaeseok
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.518-523
    • /
    • 2012
  • This paper presents new coherent and non-coherent detection methods for the IEEE 802.15.4a low-rate ultra-wideband physical layer with forward error correction (FEC) coding techniques. The coherent detection method involving channel estimation is based on the correlation characteristics of the preamble signal. A coherent receiver uses novel iterated selective-rake (IT-SRAKE) to detect 2-bit data in a non-line-of-sight channel. The non-coherent detection method that does not involve channel estimation employs a 2-bit data detection scheme using modified transmitted reference pulse cluster (M-TRPC) methods. To compare the two schemes, we have designed an IT-SRAKE receiver and a MTRPC receiver using an IEEE 802.15.4a physical layer. Simulation results show the performance of IT-SRAKE is better than that of the M-TRPC by 3-9 dB.

Low Power Parallel Acquisition Scheme for UWB Systems (저전력 병렬탐색기법을 이용한 UWB시스템의 동기 획득)

  • Kim, Sang-In;Cho, Kyoung-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.147-154
    • /
    • 2007
  • In this paper, we propose a new parallel search algorithm to acquire synchronization for UWB(Ultra Wideband) systems that reduces computation of the correlation. The conventional synchronization acquisition algorithms check all the possible signal phases simultaneously using multiple correlators. However it reduces the acquisition time, it makes high power consumption owing to increasing of correlation. The proposed algorithm divides the preamble signal to input the correlator into an m-bit bunch. We check the result of the correlation at first stage of an m-bit bunch data and predict whether it has some synchronization acquisition information or not. Thus, it eliminates the unnecessary operation and save the number of correlation. We evaluate the proposed algorithm under the AWGN and the multi-Path channel model with MATLAB. The proposed parallel search scheme reduces number of the correlation 65% on the AWGN and 20% on the multi-path fading channel.

Frame Synchronization Algorithm based on Differential Correlation for Burst OFDM System (Burst OFDM 시스템을 위한 차동 상관 기반의 프레임 동기 알고리즘)

  • Um Jung-Sun;Do Joo-Hyun;Kim Min-Gu;Choi Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.1017-1026
    • /
    • 2005
  • In burst OFDM system, the frame synchronization should be performed first for the acquisition of received frame and the estimation of the correct FFT-window position. The conventional frame synchronization algorithms using design features of the preamble symbol, the repetition pattern of the OFDM symbol by pilot sub-carrier allocation rule and Cyclic Prefix(CP), has difficulty in the detection of precise frame timing because its correlation characteristics would increase and decrease gradually. Also, the algorithm based on the correlation between the reference signal and the received signal has performance degradation due to frequency offset. Therefore, we adopt a differential correlation method that is robust to frequency offset and has the clear peak value at the correct frame timing for frame synchronization. However, performance improvement is essential for differential correlation methods, since it usually shows multiple peak values due to the repetition pattern. In this paper, we propose an enhanced frame synchronization algorithm based on the differential correlation method that shows a clear single peak value by using differential correlation between samples of identical repeating pattern. We also introduce a normalization scheme which normalizes the result of differential correlation with signal power to reduce the frame timing error in the high speed mobile channel environments.

Improved Channel Estimation for Selective RAKE Receiver in LR-UWB System (저속 UWB 시스템에서 선택적 레이크 수신기를 위한 개선된 채널 추정 방법)

  • Kwon, Soon-Koo;Jung, Yun-Ho;Kim, Jae-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.138-144
    • /
    • 2009
  • This paper proposes an efficient scheme to estimate the channel parameters such as channel gain and delay for the IEEE802.15.4a LR-UWB systems. Sliding window (SW) method is generally used for the channel estimation of LR-UWB systems, which extracts the channel parameters by performing the cross-correlation with the repeatedly transmitted signal. However, the SW method experiences the severe performance degradation because the cross-correlation is performed just once for the received signal. In this paper, we propose a novel channel estimation scheme, which can achieve a great performance gain by performing the cross-correlation repeatedly with the repeated receive signal. In order to verify the performance gain of the proposed scheme, we performed the intensive simulation with the Saleh-Valenzuela channel model. Simulation results show that the proposed scheme has a performance improvement of 4dB compared to the conventional SW channel estimation scheme.

Combined Time Synchronization And Channel Estimation For MB-OFDM UWB Systems

  • Kareem, Aymen M.;El-Saleh, Ayman A.;Othman, Masuri
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1792-1801
    • /
    • 2012
  • Symbol timing error amounts to a major degradation in the system performance. Conventionally, timing error is estimated by predefined preamble on both transmitter and receiver. The maximum of the correlation result is considered the start of the OFDM symbol. Problem arises when the prime path is not the strongest one. In this paper, we propose a new combined time and channel estimation method for multi-band OFDM ultra wide-band (MB-OFDM UWB) systems. It is assumed that a coarse timing has been obtained at a stage before the proposed scheme. Based on the coarse timing, search interval is set (or time candidates). Exploiting channel statistics that are assumed to be known by the receiver, we derive a maximum a posteriori estimate (MAP) of the channel impulse response. Based on this estimate, we discern for the timing error. Timing estimation performance is compared with the least squares (LS) channel estimate in terms of mean squared error (MSE). It is shown that the proposed timing scheme is lower in MSE than the LS method.

Fast Retransmission Scheme for Overcoming Hidden Node Problem in IEEE 802.11 Networks

  • Jeon, Jung-Hwi;Kim, Chul-Min;Lee, Ki-Seok;Kim, Chee-Ha
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.4
    • /
    • pp.324-330
    • /
    • 2011
  • To avoid collisions, IEEE 802.11 medium access control (MAC) uses predetermined inter-frame spaces and the random back-off process. However, the retransmission strategy of IEEE 802.11 MAC results in considerable time wastage. The hidden node problem is well known in wireless networks; it aggravates the consequences of time wastage for retransmission. Many collision prevention and recovery approaches have been proposed to solve the hidden node problem, but all of them have complex control overhead. In this paper, we propose a fast retransmission scheme as a recovery approach. The proposed scheme identifies collisions caused by hidden nodes and then allows retransmission without collision. Analysis and simulations show that the proposed scheme has greater throughput than request-to-send and clear-to-send (RTS/CTS) and a shorter average waiting time.

Design of Time Synchronizer for Advanced LR-WPAN Systems (개선된 LR-WPAN 시스템을 위한 시간 동기부 설계)

  • Park, Mincheol;Lee, Dongchan;Jang, Soohyun;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.476-482
    • /
    • 2014
  • Recently, with the growth of various sensor applications, the need of wireless communication systems which can support variable data rate is increasing. IEEE 802.15.4 LR-WPAN system using 2.45 GHz frequency band is very popular for the sensor applications. However, since LR-WPAN only supports the data rate of 250 kbps, it has a limit to be applied to various sensor networks. Therefore, we define the preamble structure which can support the data rates of 31.25 kbps, 62.5 kbps, 125 kbps, and present the low-complexity hardware architecture for time synchronizer based on double-correlation algorithm which can resist the CFO (carrier frequency offset). Implementation results show that the proposed time synchronizer include the logic slice of 18.36 K and four DSP48s, which are reduced at the rate of 79.1% and 99.4%, respectively, compared with existing architecture.

Low-complexity Timing Synchronization System for IEEE802.11a Wireless LANs (IEEE802.11a 무선 랜 적용을 위한 시간동기 시스템 제안)

  • 하태현;이성주;김재석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11B
    • /
    • pp.965-971
    • /
    • 2003
  • This paper suggests a low-complexity frame timing synchronization system for IEEE802.11a wireless LAN systems. The proposed timing synchronization scheme has been implemented by correlating the received OFDM preamble with quantized coefficients composed of {0, ${\pm}$2$^{0}$ , ${\pm}$2$^1$‥‥‥ ${\pm}$2$^{i}$ ), where i is an integer number. The 2$^{i}$ -valued coefficients enable the multipliers in the correlation system to be simplified to i-bit shifters. So we can design the correlation system using shifters instead of multipliers. We estimate the performance of the proposed scheme in comparison with conventional systems under the AWGN and Rayleigh fading channels. In this paper we show that the complexity can be reduced by 90% while still maintaining a performance comparable to that of the conventional system.

Channel Estimation Method Using the Correlation in the High-Speed Wireless Transmissions (고속 무선 전송에서 상관관계를 이용한 채널 추정방식)

  • Lee Joo-Hyoung;Kim Joo-Kyoung;Kim Jae-Moung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.1 s.6
    • /
    • pp.63-71
    • /
    • 2005
  • This paper proposes the channel estimation method robust to severe frequency selective fading channels in O%M system using wide bandwidth for the high data rate transmission. DDCE, which uses data between the high correlated symbols, is usually used for channel estimation in the slow fading channels. DDCE can get high gains in the non-selective channels. As the bandwidth of system gets wider, it becomes more severe frequency selective fading environments so that the reliability of data becomes lower and error flow is occurred. FE method, this paper proposed, uses the relation between sub-carriers of OFDM in frequency selective fading channels so FE method gets some gains by adapting the power value at a target frequency to the mean value of channel estimated values of adjacent sub-carriers. Because FE uses only preamble unlike DDCE using data, it is independent of data rate related to the reliability of data and the number of multipath. Consequently, FE can obtain considerable gains in the wideband systems where the errorflow of DDCE is occurred, and FE is applicable to frequency selective fading environments.

  • PDF