• 제목/요약/키워드: Pre-segmentation

검색결과 144건 처리시간 0.019초

Research on Water Edge Extraction in Islands from GF-2 Remote Sensing Image Based on GA Method

  • Bian, Yan;Gong, Yusheng;Ma, Guopeng;Duan, Ting
    • Journal of Information Processing Systems
    • /
    • 제17권5호
    • /
    • pp.947-959
    • /
    • 2021
  • Aiming at the problem of low accuracy in the water boundary automatic extraction of islands from GF-2 remote sensing image with high resolution in three bands, new water edges automatic extraction method in island based on GF-2 remote sensing images, genetic algorithm (GA) method, is proposed in this paper. Firstly, the GA-OTSU threshold segmentation algorithm based on the combination of GA and the maximal inter-class variance method (OTSU) was used to segment the island in GF-2 remote sensing image after pre-processing. Then, the morphological closed operation was used to fill in the holes in the segmented binary image, and the boundary was extracted by the Sobel edge detection operator to obtain the water edge. The experimental results showed that the proposed method was better than the contrast methods in both the segmentation performance and the accuracy of water boundary extraction in island from GF-2 remote sensing images.

Multi-Style License Plate Recognition System using K-Nearest Neighbors

  • Park, Soungsill;Yoon, Hyoseok;Park, Seho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권5호
    • /
    • pp.2509-2528
    • /
    • 2019
  • There are various styles of license plates for different countries and use cases that require style-specific methods. In this paper, we propose and illustrate a multi-style license plate recognition system. The proposed system performs a series of processes for license plate candidates detection, structure classification, character segmentation and character recognition, respectively. Specifically, we introduce a license plate structure classification process to identify its style that precedes character segmentation and recognition processes. We use a K-Nearest Neighbors algorithm with pre-training steps to recognize numbers and characters on multi-style license plates. To show feasibility of our multi-style license plate recognition system, we evaluate our system for multi-style license plates covering single line, double line, different backgrounds and character colors on Korean and the U.S. license plates. For the evaluation of Korean license plate recognition, we used a 50 minutes long input video that contains 138 vehicles of 6 different license plate styles, where each frame of the video is processed through a series of license plate recognition processes. From two experiments results, we show that various LP styles can be recognized under 50 ms processing time and with over 99% accuracy, and can be extended through additional learning and training steps.

사전 정보가 없는 배송지에서 장애물 탐지 및 배송 드론의 안전 착륙 지점 선정 기법 (Obstacle Detection and Safe Landing Site Selection for Delivery Drones at Delivery Destinations without Prior Information)

  • 서민철;한상익
    • 자동차안전학회지
    • /
    • 제16권2호
    • /
    • pp.20-26
    • /
    • 2024
  • The delivery using drones has been attracting attention because it can innovatively reduce the delivery time from the time of order to completion of delivery compared to the current delivery system, and there have been pilot projects conducted for safe drone delivery. However, the current drone delivery system has the disadvantage of limiting the operational efficiency offered by fully autonomous delivery drones in that drones mainly deliver goods to pre-set landing sites or delivery bases, and the final delivery is still made by humans. In this paper, to overcome these limitations, we propose obstacle detection and landing site selection algorithm based on a vision sensor that enables safe drone landing at the delivery location of the product orderer, and experimentally prove the possibility of station-to-door delivery. The proposed algorithm forms a 3D map of point cloud based on simultaneous localization and mapping (SLAM) technology and presents a grid segmentation technique, allowing drones to stably find a landing site even in places without prior information. We aims to verify the performance of the proposed algorithm through streaming data received from the drone.

매니아 소비자의 태도와 성향에 의한 디지털 매니아 세그멘테이션 제안 (A proposition on digital maniac consumer market segmentation by consumer characteristics and behavior)

  • 김유리;이혜선
    • 디자인학연구
    • /
    • 제19권5호
    • /
    • pp.243-254
    • /
    • 2006
  • 매니아는 트렌드와 소비의 주체라는 점에서 마케팅의 파급력이 크다. 그렇기 때문에 매니아들의 심리적 동인인 니즈와 원츠를 읽어내고 세그먼트를 찾아내는 것이 무엇보다도 먼저 실행되어야 한다. 본 연구는 디지털 제품 매니아 시장세분화에 대한 통찰력을 얻기 위한 탐색적 연구로 혁신적 소비자에 관한 선행연구 스케일들을 이용하여 국내 매니아 커뮤니티의 이용자들이 어떤 성향을 갖는지, 선행연구와 어떤 차이를 보이는지, 그들의 구매우선순위와 가치항목은 무엇인지를 알아낸다. 이를 토대로 매니아 유저를 심층면접한 후 분석하여 새로운 매니아 세그먼트를 발견하고 분류하는 데 연구의 초점을 두었다. 우리나라의 디지털 매니아들이 소비자로서 어떤 구매행태를 보이고, 어떻게 구매로 이르는 의사결정을 하는지, 매니아들의 잠재 니즈는 무엇인지를 해석하고 새로운 매니아 세그멘트를 발견함으로써 디지털 매니아의 성향 및 실태에 대해 접근할 수 있으며 추후에 이뤄질 매니아 타켓 마케팅과 디자인의 전략적 단서를 제시하고자 한다.

  • PDF

지역적 엔트로피와 텍스처의 주성분 분석을 이용한 문서영상의 분할 및 구성요소 분류 (Segmentation and Contents Classification of Document Images Using Local Entropy and Texture-based PCA Algorithm)

  • 김보람;오준택;김욱현
    • 정보처리학회논문지B
    • /
    • 제16B권5호
    • /
    • pp.377-384
    • /
    • 2009
  • 본 논문은 지역적 엔트로피 기반의 히스토그램을 이용한 문서영상의 분할과 텍스처 기반의 주성분 분석을 이용한 구성요소인 글자, 그림, 그래프 등의 구성요소 분류방안을 제안한다. 지역적 엔트로피와 히스토그램을 이용함으로써 문서영상의 다양한 변형이나 잡음에 강건하며 빠르고 손쉬운 이진화가 가능하다. 그리고 문서영상 내 존재하는 구성요소들이 각기 다른 텍스처 정보를 가지고 있다는 것에 착안하여 각 분할 영역의 텍스처 정보를 기반으로 주성분분석을 수행하였으며 이를 통해 사전에 구성요소들에 대한 구조정보를 설정할 필요가 없다는 장점을 가진다. 실험결과에서 다양한 문서영상의 분할 및 분류결과를 보였으며, 기존 방법보다 우수한 성능을 가져 그 유효함을 보였다.

3차원 모델링을 위한 라이다 데이터로부터 특징점 추출 방법 (Key Point Extraction from LiDAR Data for 3D Modeling)

  • 이대건;이동천
    • 한국측량학회지
    • /
    • 제34권5호
    • /
    • pp.479-493
    • /
    • 2016
  • 항공 레이저 스캐너(ALS)로부터 획득한 라이다(LiDAR) 데이터는 지형지물을 모델링하기 위해서 널리 사용되고 있으며, 특히 정밀 3차원 건축물 및 도시모델, 엄밀정사영상 등 고품질의 공간정보를 효율적으로 구축하기 위하여 라이다 데이터를 이용한 3차원 모델링에 관한 연구가 지속적으로 수행되고 있다. 불규칙적으로 분포된 고밀도의 라이다 데이터로부터 객체를 3차원으로 모델링하기 위해서는 시스템 캘리브레이션, 노이즈 제거 및 지면과 객체를 분리하기 위한 필터링, 객체의 종류 및 특성에 따른 데이터 분류, 기하학적 특성 및 동질성에 기반한 데이터 분할, 분할면의 군집화 및 묘사, 분할면의 재구성과 조합에 의한 모델링, 품질검사 등 일련의 복잡한 과정들이 수반된다. 라이다 데이터를 이용한 많은 모델링 방법들은 데이터 분할 과정을 포함하고 있지만, 본 논문에서는 라이다 데이터를 분할하지 않고 객체를 구성하는 중요하고 대표적인 특징점들을 추출하여 건물 모델링에 활용하는 방법을 제안하고 있다. 복잡하고 다양한 건물 형태를 시뮬레이션한 데이터와 실제 데이터에 적용하여 제안한 방법의 타당성 및 정확도를 검증하였다.

Automatic Detection System of Underground Pipe Using 3D GPR Exploration Data and Deep Convolutional Neural Networks

  • Son, Jeong-Woo;Moon, Gwi-Seong;Kim, Yoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권2호
    • /
    • pp.27-37
    • /
    • 2021
  • 본 논문에서는 관로를 자동으로 검출하는 지하 관로 자동 탐색 시스템을 제안한다. 시간에 따른 지반변화, 관로 시공 불일치 등 여러 가지 요인으로 실제 관로의 위치가 지하 관로 도면과 일치하지 않는다. 이로 인하여 굴착공사나 관로 노후화에 의한 여러 사고가 발생한다. 사고를 방지하기 위해 GPR(지표 투과 레이더, Ground Penetrating Radar) 탐사를 통해 지하시설물을 찾아내는 작업이 이루어지고 있지만, 분석을 담당할 수 있는 전문가의 수가 부족하다. GPR 데이터는 매우 방대하며 분석과정에도 오랜 시간이 걸리기 때문이다. 이에 본 논문에서는 3D GPR 데이터를 자동으로 분석하기 위해 딥 러닝 기술인 3D 이미지 분할을 사용하고, 이에 적합한 데이터 생성 알고리즘을 제안한다. 또한 GPR 데이터 특성에 맞는 데이터 증강 기법, 데이터 전처리 모듈을 제안한다. 실험 결과를 통해 제안한 시스템은 F1 Score 40.4%의 성능을 보였으며 이를 통해 이미지 분할을 이용한 관로 분석의 가능성을 확인하였다.

빅데이터와 딥페이크 기반의 헤어스타일 추천 시스템 구현 (Implementation of Hair Style Recommendation System Based on Big data and Deepfakes)

  • 김태국
    • 사물인터넷융복합논문지
    • /
    • 제9권3호
    • /
    • pp.13-19
    • /
    • 2023
  • 본 논문에서는 빅데이터와 딥페이크 기반의 헤어스타일 추천 시스템 구현에 관해 연구하였다. 제안한 헤어스타일 추천 시스템은 사용자의 사진(이미지)을 바탕으로 얼굴형을 인식한다. 얼굴형은 타원형, 둥근형, 장방형으로 구분하며, 얼굴형에 잘 어울리는 헤어스타일을 딥페이크를 통해 합성하여 동영상으로 제공한다. 헤어스타일은 빅데이터를 바탕으로 최신 트랜드(trend)와 얼굴형에 어울리는 스타일을 적용하여 추천한다. 이미지의 분할 맵과 Motion supervised Co-Part Segmentation 알고리즘으로 같은 카테고리(머리, 얼굴 등)를 가지는 이미지들 간 요소를 합성할 수 있다. 다음으로 헤어스타일이 합성된 이미지와 미리 지정해둔 동영상을 Motion Representations for Articulated Animation 알고리즘에 적용하여 동영상 애니메이션을 생성한다. 제안한 시스템은 가상 피팅 등 전반적인 미용산업에 활용될 수 있을 것으로 기대한다. 향후 연구에서는 거울에 사물인터넷 기능 등을 적용하여 헤어스타일등을 추천해주는 스마트 거울을 연구할 예정이다.

코로나바이러스 감염증19 데이터베이스에 기반을 둔 인공신경망 모델의 특성 평가 (Evaluation of Deep-Learning Feature Based COVID-19 Classifier in Various Neural Network)

  • 홍준용;정영진
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권5호
    • /
    • pp.397-404
    • /
    • 2020
  • Coronavirus disease(COVID-19) is highly infectious disease that directly affects the lungs. To observe the clinical findings from these lungs, the Chest Radiography(CXR) can be used in a fast manner. However, the diagnostic performance via CXR needs to be improved, since the identifying these findings are highly time-consuming and prone to human error. Therefore, Artificial Intelligence(AI) based tool may be useful to aid the diagnosis of COVID-19 via CXR. In this study, we explored various Deep learning(DL) approach to classify COVID-19, other viral pneumonia and normal. For the original dataset and lung-segmented dataset, the pre-trained AlexNet, SqueezeNet, ResNet18, DenseNet201 were transfer-trained and validated for 3 class - COVID-19, viral pneumonia, normal. In the results, AlexNet showed the highest mean accuracy of 99.15±2.69% and fastest training time of 1.61±0.56 min among 4 pre-trained neural networks. In this study, we demonstrated the performance of 4 pre-trained neural networks in COVID-19 diagnosis with CXR images. Further, we plotted the class activation map(CAM) of each network and demonstrated that the lung-segmentation pre-processing improve the performance of COVID-19 classifier with CXR images by excluding background features.

임계값 기반 충격 전 낙상검출 및 실제 노인 데이터셋을 사용한 검증 (Threshold-based Pre-impact Fall Detection and its Validation Using the Real-world Elderly Dataset)

  • 김동권;이승희;구범모;양수민;김영호
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권6호
    • /
    • pp.384-391
    • /
    • 2023
  • Among the elderly, fatal injuries and deaths are significantly attributed to falls. Therefore, a pre-impact fall detection system is necessary for injury prevention. In this study, a robust threshold-based algorithm was proposed for pre-impact fall detection, reducing false positives in highly dynamic daily-living movements. The algorithm was validated using public datasets (KFall and FARSEEING) that include the real-world elderly fall. A 6-axis IMU sensor (Movella Dot, Movella, Netherlands) was attached to S2 of 20 healthy adults (aged 22.0±1.9years, height 164.9±5.9cm, weight 61.4±17.1kg) to measure 14 activities of daily living and 11 fall movements at a sampling frequency of 60Hz. A 5Hz low-pass filter was applied to the IMU data to remove high-frequency noise. Sum vector magnitude of acceleration and angular velocity, roll, pitch, and vertical velocity were extracted as feature vector. The proposed algorithm showed an accuracy 98.3%, a sensitivity 100%, a specificity 97.0%, and an average lead-time 311±99ms with our experimental data. When evaluated using the KFall public dataset, an accuracy in adult data improved to 99.5% compared to recent studies, and for the elderly data, a specificity of 100% was achieved. When evaluated using FARSEEING real-world elderly fall data without separate segmentation, it showed a sensitivity of 71.4% (5/7).