• 제목/요약/키워드: Pre-segmentation

검색결과 144건 처리시간 0.023초

심층 학습을 통한 암세포 광학영상 식별기법 (Identification of Multiple Cancer Cell Lines from Microscopic Images via Deep Learning)

  • 박진형;최세운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.374-376
    • /
    • 2021
  • 임상에서 암 관련 질병의 확진을 위해 영상장비를 이용한 기초 진단 이후 추가적인 방법으로 생체검사 등을 이용한 병리적 검사가 필수적이다. 이러한 생체검사를 진행하기 위해서는 전문지식을 가진 종양학자, 임상병리사 등의 도움과 최소한의 소요시간은 확진을 위해 반드시 필요하다. 최근 들어, 인공지능을 활용한 암세포의 자동분류가 가능한 시스템 구축에 관련된 연구가 활발하게 진행되고 있다. 하지만, 이전 연구들은 한정된 알고리즘을 기반으로 하여 세포의 종류와 정확도에 한계를 보인다. 본 연구에서 심층 학습의 일종인 합성곱 신경망을 통해 총 4가지의 암세포를 식별하는 방법을 제안한다. 세포 배양을 통해 얻은 광학영상을 OpenCV를 사용하여 세포의 위치 식별 및 이미지 분할과 같은 전처리 수행 후, EfficientNet을 통해 학습하였다. 모델은 EfficientNet을 기준으로 다양한 hyper parameter를 사용하고, InceptionV3을 학습하여 성능을 비교분석 하였다. 그 결과 96.8%의 높은 정확도로 세포를 분류하는 결과를 보였으며, 이러한 분석방법은 암의 확진에 도움이 될 것으로 기대한다.

  • PDF

철근콘크리트 손상 특성 추출을 위한 최적 컨볼루션 신경망 백본 연구 (A Study on Optimal Convolutional Neural Networks Backbone for Reinforced Concrete Damage Feature Extraction)

  • 박영훈
    • 대한토목학회논문집
    • /
    • 제43권4호
    • /
    • pp.511-523
    • /
    • 2023
  • 철근콘크리트 손상 감지를 위한 무인항공기와 딥러닝 연계에 대한 연구가 활발히 진행 중이다. 컨볼루션 신경망은 객체 분류, 검출, 분할 모델의 백본으로 모델 성능에 높은 영향을 준다. 사전학습 컨볼루션 신경망인 모바일넷은 적은 연산량으로 충분한 정확도가 확보 될 수 있어 무인항공기 기반 실시간 손상 감지 백본으로 효율적이다. 바닐라 컨볼루션 신경망과 모바일넷을 분석 한 결과 모바일넷이 바닐라 컨볼루션 신경망의 15.9~22.9% 수준의 낮은 연산량으로도 6.0~9.0% 높은 검증 정확도를 가지는 것으로 평가되었다. 모바일넷V2, 모바일넷V3Large, 모바일넷 V3Small은 거의 동일한 최대 검증 정확도를 가지는 것으로 나타났으며 모바일넷의 철근콘트리트 손상 이미지 특성 추출 최적 조건은 옵티마이저 RMSprop, 드롭아웃 미적용, 평균풀링인 것으로 분석되었다. 본 연구에서 도출된 모바일넷V2 기반 7가지 손상 감지 최대 검증 정확도 75.49%는 이미지 축적과 지속적 학습으로 향상 될 수 있다.

AWGN 환경에서 국부영역의 화소분할을 사용한 변형된 중심 가중치 필터 알고리즘 (Modified Center Weight Filter Algorithm using Pixel Segmentation of Local Area in AWGN Environments)

  • 천봉원;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.250-252
    • /
    • 2022
  • 최근 IoT 기술과 AI의 발전에 따라 다양한 분야에서 무인화와 자동화가 진행되고 있으며, 물체감지 및 인식, 추적 등의 알고리즘을 사용하는 시스템에서 다양한 응용기술들이 연구되고 있다. 영상을 기반으로 동작하는 시스템의 경우, 전처리 과정으로 잡음제거를 진행하고 있으며, 시스템의 환경에 따라 정밀한 잡음제거가 요구되는 경우가 있다. 본 논문에서는 필터링 과정에서 발생하기 쉬운 블러링 현상을 최소화하며 결과 영상의 디테일을 강조하기 위해 국부영역의 화소분할을 사용한 변형된 중심 가중치 필터 알고리즘을 제안한다. 제안한 알고리즘은 국부 영역의 화소를 두 영역으로 분할하였을 때, 분할된 영역 중 우세한 영역의 중심을 가중치 필터 알고리즘의 기준으로 정하였다. 결과영상은 필터링 마스크 내부의 화소값에 변형된 중심 가중치를 컨벌루션하여 계산한다.

  • PDF

Efficient Semi-automatic Annotation System based on Deep Learning

  • Hyunseok Lee;Hwa Hui Shin;Soohoon Maeng;Dae Gwan Kim;Hyojeong Moon
    • 대한임베디드공학회논문지
    • /
    • 제18권6호
    • /
    • pp.267-275
    • /
    • 2023
  • This paper presents the development of specialized software for annotating volume-of-interest on 18F-FDG PET/CT images with the goal of facilitating the studies and diagnosis of head and neck cancer (HNC). To achieve an efficient annotation process, we employed the SE-Norm-Residual Layer-based U-Net model. This model exhibited outstanding proficiency to segment cancerous regions within 18F-FDG PET/CT scans of HNC cases. Manual annotation function was also integrated, allowing researchers and clinicians to validate and refine annotations based on dataset characteristics. Workspace has a display with fusion of both PET and CT images, providing enhance user convenience through simultaneous visualization. The performance of deeplearning model was validated using a Hecktor 2021 dataset, and subsequently developed semi-automatic annotation functionalities. We began by performing image preprocessing including resampling, normalization, and co-registration, followed by an evaluation of the deep learning model performance. This model was integrated into the software, serving as an initial automatic segmentation step. Users can manually refine pre-segmented regions to correct false positives and false negatives. Annotation images are subsequently saved along with their corresponding 18F-FDG PET/CT fusion images, enabling their application across various domains. In this study, we developed a semi-automatic annotation software designed for efficiently generating annotated lesion images, with applications in HNC research and diagnosis. The findings indicated that this software surpasses conventional tools, particularly in the context of HNC-specific annotation with 18F-FDG PET/CT data. Consequently, developed software offers a robust solution for producing annotated datasets, driving advances in the studies and diagnosis of HNC.

Is three-piece maxillary segmentation surgery a stable procedure?

  • Renata Mayumi Kato;Joao Roberto Goncalves;Jaqueline Ignacio;Larry Wolford;Patricia Bicalho de Mello;Julianna Parizotto;Jonas Bianchi
    • 대한치과교정학회지
    • /
    • 제54권2호
    • /
    • pp.128-135
    • /
    • 2024
  • Objective: The number of three-piece maxillary osteotomies has increased over the years; however, the literature remains controversial. The objective of this study was to evaluate the skeletal stability of this surgical modality compared with that of one-piece maxillary osteotomy. Methods: This retrospective cohort study included 39 individuals who underwent Le Fort I maxillary osteotomies and were divided into two groups: group 1 (three pieces, n = 22) and group 2 (one piece, n = 17). Three cone-beam computed tomography scans from each patient (T1, pre-surgical; T2, post-surgical; and T3, follow-up) were used to evaluate the three-dimensional skeletal changes. Results: The differences within groups were statistically significant only for group 1 in terms of surgical changes (T2-T1) with a mean difference in the canine region of 3.09 mm and the posterior region of 3.08 mm. No significant differences in surgical stability were identified between or within the groups. The mean values of the differences between groups were 0.05 mm (posterior region) and -0.39 mm (canine region). Conclusions: Our findings suggest that one- and three-piece maxillary osteotomies result in similar post-surgical skeletal stability.

골격성 3급 부정교합 환자의 하악골 후퇴술 시행후 안모변화에 대한 3차원적 연구 (Three-dimensional analysis of soft and hard tissue changes after mandibular setback surgery in skeletal Class III patients)

  • Park, Jae-Woo;Kim, Nam-Kug;Kim, Myung-Jin;Chang, Young-Il
    • 대한치과교정학회지
    • /
    • 제35권4호
    • /
    • pp.320-329
    • /
    • 2005
  • 하악 수술로 치료한 골격성 3급 부정교합 환자의 연조직 변화를 3차원적으로 분석하였다. 수술전과 수술후에 CT를 촬영하고, 연조직과 경조직을 각각의 임계값에 따라 segmentation였다. FH.평면, 정중시상면, PNS를 포함하는 전두면을 기준으로 공통 좌표계를 구성하고, 이 좌표계를 기준으로 술전, 술후 영상을 위치시켰다. 술후의 변화를 측정하기 위해 각각의 모형에 대해 전두면에 평행한 grid를 형성하였다. Grid내의 교점에서 골조직과 연조직 모형에 투사하여 만나는 점의 좌표값을 구하고, 이를 바탕으로 술후의 변화를 측정하였다. 하악골 후퇴술시 안모의 변화는 하악골 부분에서만 발생한 것이 아니라, 구각부에서도 관찰되었다. 하악골 부위의 연조직 변화는 대응되는 골조직 이동량에 따른 상대적인 값으로 계산하였다. 정중시상면에서의 변화율은 $77\~102\%$로 나타났다. (p<0.05). 정중시상면 이외의 부분의 변화양상도 이와 유사하였다. 구각부에서의 변화는 하악골의 이동을 대표할 수 있는 점의 이동량에 대한 상대적인 값으로 계산하였다. 정중시상면에서의 변화는 B점을 기준으로 $14\~29\%$이고, Pog점을 기준으로 $17\~37\%$, grid상 83번째 점을 기준으로 $11\~22\%$로 관찰되었다.(p<0.05)

모션 히스토리 영상 및 기울기 방향성 히스토그램과 적출 모델을 사용한 깊이 정보 기반의 연속적인 사람 행동 인식 시스템 (Depth-Based Recognition System for Continuous Human Action Using Motion History Image and Histogram of Oriented Gradient with Spotter Model)

  • 음혁민;이희진;윤창용
    • 한국지능시스템학회논문지
    • /
    • 제26권6호
    • /
    • pp.471-476
    • /
    • 2016
  • 본 논문은 깊이 정보를 기반으로 모션 히스토리 영상 및 기울기 방향성 히스토그램과 적출 모델을 사용하여 연속적인 사람 행동들을 인식하는 시스템을 설명하고 연속적인 행동 인식 시스템에서 인식 성능을 개선하기 위해 행동 적출을 수행하는 적출 모델을 제안한다. 본 시스템의 구성은 전처리 과정, 사람 행동 및 적출 모델링 그리고 연속적인 사람 행동 인식으로 이루어져 있다. 전처리 과정에서는 영상 분할과 시공간 템플릿 기반의 특징을 추출하기 위하여 Depth-MHI-HOG 방법을 사용하였으며, 추출된 특징들은 사람 행동 및 적출 모델링 과정을 통해 시퀀스들로 생성된다. 이 생성된 시퀀스들과 은닉 마르코프 모델을 사용하여 정의된 각각의 행동에 적합한 사람 행동 모델과 제안된 적출 모델을 생성한다. 연속적인 사람 행동 인식은 연속적인 행동 시퀀스에서 적출 모델에 의해 의미 있는 행동과 의미 없는 행동을 분할하는 행동 적출과 의미 있는 행동 시퀀스에 대한 모델의 확률 값들을 비교하여 연속적으로 사람 행동들을 인식한다. 실험 결과를 통해 제안된 모델이 연속적인 행동 인식 시스템에서 인식 성능을 효과적으로 개선하는 것을 검증한다.

ASTGTM 전지구 DEM 기반의 수력발전댐 적지분석 사전모델링 (A feasibility modeling of potential dam site for hydroelectricity based on ASTGTM DEM data)

  • 장원진;이용관;김성준
    • 한국수자원학회논문집
    • /
    • 제53권7호
    • /
    • pp.545-555
    • /
    • 2020
  • 본 연구에서는 해외 수력댐 건설 프로젝트의 사전조사 기초자료 제공을 위하여 댐 위치 결정을 위한 사전적지분석 알고리즘을 개발하고, 위성영상 수치표고자료인 ASTER Global Digital Elevation Model (ASTGTM)과 토지피복자료인 Terra/Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) MCD12Q1를 사용하였다. 사전적지분석 알고리즘은 DEM의 전처리, 하천망생성, 유역분할과 지형정보를 고려한 적지분석과 댐 건설 시 수몰면적에 따른 보상면적 산정 알고리즘을 포함하고 있으며 Python기반의 오픈소스 GIS로 구현되었다. 적지분석은 사용자가 하천 위의 지점을 선택하면, DEM으로부터 낙차, 도달시간, 내용적곡선과 같은 지형정보와 토지피복자료를 통한 보상면적을 기반으로 지점의 적지여부를 평가한다. 분석알고리즘은 국내 부항, 보현산, 성덕, 영주댐을 대상으로 시범적용 됐으며 해당 지점의 가능 최대낙차는 각각 37, 67, 73, 42 m로 나타났으며 최대저수면적은 1.81, 2.4, 2.8, 8.8 ㎢ 최대저수량은 35.9, 68, 91.3, 168.3×106 ㎥으로 나타났다. 보현산과 성주 댐에서는 타당성을 보였으나, 부항과 영주 댐의 경우 ASTGTM 에러로 인한 잘못된 하천망과 유역경계로 인해 낙차가 제한됨을 보였다, 본 연구의 결과는 향후 해외 수력댐 사업 진출시 사전분석에서 적지의 지형학적 평가에 도움이 될 것으로 기대된다.

은닉 마르코프 모델을 이용한 MPEG 압축 비디오에서의 점진적 변환의 검출 (Detection of Gradual Transitions in MPEG Compressed Video using Hidden Markov Model)

  • Choi, Sung-Min;Kim, Dai-Jin;Bang, Sung-Yang
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권3호
    • /
    • pp.379-386
    • /
    • 2004
  • 비디오 요약의 첫 걸음은 샷(shot) 변환의 검출이다. 이러한 샷 변환은 점진적인 변환과 급진적인 변환이 있다. 지금까지 급진적인 샷 변환은 이미 주어진 한계치나 연속된 두 프레임의 이미지에 기반을 둔 거리를 이용하여 검출하였고 점진적 변환 또한 일반적으로 한계치를 이용하여 검출하였다. 그러나 한계치에 따라 그 결과가 확연히 달라지고 또한 그 한계치를 정하는 것도 어려운 문제이다. 이 논문에서는 이런 문제의 해결과 MPEG 압축 비디오 상에서 점진적 변화의 검출뿐만 아니라 분류를 해결하는 방법을 제시하였다. 논문에서는 한계치를 사용하지 않은 은닉 마르코프 모델과 MPEG의 근사 DC 값을 이용하여 보다 빠르고 정확한 결과를 얻도록 하였다. 그리고 히스토그램의 차이뿐만 아니라 매크로 블록 (macro block)의 차이라 불리는 새로운 척도를 도입하여 보다 정확한 값을 얻도록 하였다. 은닉 마르코프 모델은 샷, 페이드(fade), 디졸브(dissolve), 컷(cut) 등의 4개의 상태를 갖게 하고 학습은 Baum-Welch 알고리즘으로 필요한 변수들을 추정하였다. 그리고 특정 벡터에 Viterbi 알고리즘을 적용하여 원하는 상태를 얻을 수 있다. 대부분의 실험 결과를 보면 새로 제안한 척도를 사용한 방법이 히스토그램의 차만을 이용한 방법보다 더 좋은 결과를 나타내었으며 이산적 마르코프 모델보다 연속적 마르코프 모델이 좋은 결과를 보여준다.

가우시안 잡음 제거를 위한 부분 집합 평균 메디안 방법에 관한 연구 (A study on the subset averaged median methods for gaussian noise reduction)

  • 이용환;박장춘
    • 한국컴퓨터정보학회논문지
    • /
    • 제4권2호
    • /
    • pp.120-134
    • /
    • 1999
  • 영상 처리는 영상 획득, 전처리, 영역화, 인식의 단계를 거치게 되며, 영상은 데이터 전송과정이나 테이터의 획득과정 및 데이터의 처리과정에서 잡음에 의해 쉽게 훼손된다. 이러한 과정에서 발생되는 잡음으로 대표적인 것이 임펄스 잡음과 가우시안 잡음이다. 이러한 잡음을 제거하는 기존의 필터링 방법들 중에는 공간적인 처리 기법으로 평균필터, 메디안필터, 가중필터, cheikh 필터 그리고 이규철 필터 등이 있었지만 많은 연구들이 임펄스 잡음의 제거에 치우쳐져 있고, 비교적 가우시안 잡음의 제거에 대한 연구는 미비한 편이다. 본 논문에서는 가우시안 잡음의 제거를 위해서는 부분 집합의 평균 정보와 메디안 방법을 이용한 부분 집합 평균 메디안 필터를 제시한다. 이 방법에서도 고려되는 윈도우의 크기는 3$^{*}$ 3를 적용하였다. 먼저 해당 윈도우내 픽셀을 중심픽셀 및 근접한 픽셀을 포함하여 4픽셀로 구성되는 4개의 부분집합으로 구성한 후, 각각의 평균을 구하고 여기서 구해진 4 부분집합의 평균값에 대한 정보와 중심 픽셀의 값과 함께 정렬을 하여 메디안 값을 구하는 방법이다. 이를 통해 가우시안을 기존의 방법보다 더 효율적으로 제거 할 수 있었다. 제시된 알고리즘은 Sun Ultra 2에서 ANSI C 언어를 사용하여 테스트되었으며, 기존의 필터 방법과의 제시된 필터 방법간의 PSNR, MSE, RMSE 값의 비교를 통해 비교 영상과 잡음들에서의 필터 성능과 효과를 제시하였다.

  • PDF