• Title/Summary/Keyword: Pre-polymer

Search Result 235, Processing Time 0.026 seconds

Fundamental Propeties of Premix Type Polymer Cement Mortar (프리믹스 타입 폴리머 시멘트 모르터의 기초적 성질)

  • 연규석;주명기;최동순;김기락;김남길
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.641-646
    • /
    • 1997
  • Polymer cement mortar which is used as material for aging concrete structures is generally mixed manually and applied on the job site. but, to secure the required quality of the mortar, pre-mixed polymer cement mortar is favored. This study was initiated to four different pre-mixed polymer cement mortars which are produced in Korea. The for pre-mixed mortars were selected and tested with respect to physical and mechanical properties an proved that their qualities were better than those of common cement concrete mortars.

  • PDF

Effect of Process Parameters on Residual NCO and Viscosity of Pre-Polymers (Pre-Polymer의 제조에서 공정변수가 잔류 NCO 및 점도에 미치는 영향)

  • Kim, Sang-Oh;You, Man-Hee;Ha, Man-Kyung;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.61-66
    • /
    • 2008
  • For the production of urethane prepolymer, the effect of process parameters such as diisocyanate MDI and polyol TDI was tested. In this paper, design of experiments has been adopted for studying the effect of the process parameters on the improvement of NCO and viscosity of pre-polymer. As a result of comparison of different parameters, the effect of polyol was stronger than that of isocyanate in comparison of reactivity according to the amounts of isocyanate and polyol. Especially, NCO and viscosity of pre-polymer affected a product safety.

  • PDF

Anisotropy in Gum and Black Filled SBR and NR Vulcanizates Due to Large Deformation

  • Park, Byung-Ho;G.R. Hamed
    • Macromolecular Research
    • /
    • v.8 no.6
    • /
    • pp.268-275
    • /
    • 2000
  • After imposing a large pre-strain, anisotropy increases with increasing residual extension ratio. Gums have very low residual extension ratio and exhibit little anisotropy, while black filled SBR and especially sulfur-cured carbon black filled NR have large set and anisotropy. For carbon black filled rubber, samples subjected to tensile loading in perpendicular to the pre-strain direction have the same stress-strain curves shape as the sample without pre-strain (=isotropic samples), but slightly lower modulus. However, compared to isotropic or perpendicular directional samples to pre-strain direction, samples subjected to tensile loading in parallel to the pre-strain direction show low stress at low deformation, but have high stiffness at high deformation. Normalized anisotropy changes with strain. The normalized anisotropy for various deformations is a linear function of residual extension ratio.

  • PDF

Research of Possibility of Carrageenan as DTP Pre-treatment Thickening Agent for Cellulosic Fabric (카라기난(Carrageenan)의 셀룰로오스 직물 DTP 전처리 호제로써의 가능성 연구)

  • Ki, Saetbyul;Seo, Hyeji;Hong, Jinpyo;Yoon, Seokhan;Shin, Kyung
    • Textile Coloration and Finishing
    • /
    • v.27 no.4
    • /
    • pp.318-326
    • /
    • 2015
  • A pre-treatment process is essential for getting high quality of digital textile printing(DTP). In this study, we have studied three kinds of carrageenan polymer(k-, ${\lambda}$-, i-Carrageenan) as a pre-treatment thickening agent for the first time. Alginate polymer was also examined and its results were compared with that of the three kinds of carrageenan polymer. To confirm the performance of each thickening agent, we examined for a sharpness, color strength and fastness(washing, rub, light). The result showed that ${\lambda}$-Carrageenan has superior property in sharpness with low viscosity and i-Carrageenan was excellent in the color strength among the pre-treatment agents. Washing fastness to color change and staining for the all samples were 4 or 4-5 grade. Both dry and wet rubbing fastness of the samples were 4-5 grade. However, ${\lambda}$-Carrageenan coated sample has the lowest grade in light fastness. As a result, we found the possibility of carrageenan polymer as pre-treatment agent.

The Characteristics of GZOB Thin Film on O2 Plasma Treated Polymer Substrate (O2 플라즈마로 처리한 폴리머 기판 위에 성장된 GZOB 박막의 특성)

  • Yu, Hyun-Kyu;Lee, Jong-Hwan;Lee, Tae-Yong;Hur, Won-Young;Lee, Kyung-Chun;Shin, Hyun-Chang;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.645-649
    • /
    • 2009
  • We investigated the effects of a high density $O_2$ plasma treatment on the structural and electrical properties of Ga-, B- codoped ZnO (GZOB) films. The GZOB films were deposited on polymer substrate without substrate heating by DC magnetron sputtering. Prior to the GZOB film growth, we treated a polymer substrate with highly dense inductively coupled oxygen plasma. The optical transmittance of the GZOB film, about 80 %, was maintained regardless of the plasma pre-treatment. The resistivity of the GZOB film on PC substrate decreased from 9.08 ${\times}$ $10^{-3}$ ${\Omega}-cm$ without an $O_2$ plasma pre-treatment to 2.12 ${\times}$ $10^{-3}$ ${\Omega}-cm$ with an $O_2$ plasma pre-treatment. And PES substrate decreased from 1.14 ${\times}$ $10^{-2}$ ${\Omega}-cm$ without an $O_2$ plasma pre-treatment to 6.13 ${\times}$ $10^{-3}$ ${\Omega}-cm$ with an $O_2$ plasma pre-treatment.

Development of SPR Gas Sensor for Small Molecules Using Molecularly Imprinted Polymer Thin Films

  • Jang, Seong-U;Jin, Seong-Il;Park, Chan-Ryang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.242.2-242.2
    • /
    • 2011
  • Molecularly imprinted polymer thin films were applied to develop a gas sensor based on the surface plasmon resonance phenomenon for small gaseous molecules such as toluene and xylene. The imprinted polymer films were synthesized via photo-polymerization method using various combination of templates, functional monomers and cross-linkers. The temperature of pre-polymerization solutions and the power of UV light were controlled for optimized performance of gas sensing. The morphology and porosity of the polymer films were controlled by varying the mixing ratios of the pre-polymerization solutions and confirmed by atomic force microscopy. By fitting the adsorption/desorption sensorgrams to conventional kinetic models, the effects of different templates and cross-linkers were interpreted in term of the structural differences of the polymer networks formed on the gold film. The sensitivity and selectivity of sensors were estimated for toluene and xylene, and also for humidity and other gaseous molecules such as formaldehyde and ammonia.

  • PDF

Mechanisms of Platelet Adhesion on Elastic Polymer Surfaces: Protein Adsorption and Residence Effects

  • Insup Noh;Lee, Jin-Hui
    • Macromolecular Research
    • /
    • v.9 no.4
    • /
    • pp.197-205
    • /
    • 2001
  • Platelet adhesion onto elastic polymeric biomaterials was tested in vitro by perfusing human whole blood at a shear rate of 100 sec$\^$-1/ for possible verification of mechanisms of initial platelet adhesion perfusion of blood on the polymeric substrates was performed after treatments either with or without pre-adsorption of 1% blood plasma, and either with or without residence of the protein-preadsorbed substrate in phosphate buffered solution. The surfaces employed were elastic polymers such as poly(ether urethane urea), poly(ether urethane), silicone urethane copolymer, silicone rubber and poly(ether urethane) with the anti-calcifying agent hydroxyethane bisphosphate. Each polymer surface treated was exposed in vitro to the dynamic, heparinized whole blood perfused for upto 6 min and the surface area of platelets initially adhered was measured by employing in situ epifluorescence video microscopy. The blood perfusion was performed on the surfaces treated at the following three different conditions: directly on the bare surfaces, after protein pre-adsorption and after residence in buffer for 3 days of the surfaces protein pre-adsorbed for 2 h. The effects of blood plasma pre-adsorption on the initial platelet adhesion was surface-dependent. The amount of the adsorbed fibrinogen and the surface coverage area of the adhered platelets were dependent on the surface conditions whether substrates were bare surfaces or protein pre-adsorbed ones. To test an effect of possible morphological (re)orientations of the adsorbed proteins on the initial platelet adhesion, the polymeric substrate pre-adsorbed with 1% blood plasma was immersed in phosphate buffered solution for 3 days and then exposed to physiological blood perfusion. The surface area of the platelets adhered on these surfaces was significantly different from that of the surfaces treated with protein pre-adsorption only. These results indicated that platelet adhesion was dependent on the surface property itself and pre-treatment conditions such as blood perfusion without any pre-adsorption of proteins, and blood perfusion either after protein pre-adsorption or after subsequent substrate residence in buffer of the substrate pre-adsorbed with proteins. Understanding of these results may guide for better designs of blood-contacting materials based on protein behaviors.

  • PDF

Process Optimization of Polyurethane Pre-polymer for Medical Application (의료용 폴리우레탄 Pre-polymer의 중합공정 최적화)

  • Hur, Kwang-Tae;Koo, Yang;Ha, Man-Kyung;Kwak, Jae-Seob
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.203-208
    • /
    • 2008
  • Recently, the modern society in development and industrial growth is investing a lot of time and much effort to improvement and environment of life quality. Thus, the casting tape which uses environmentally friendly and human body friendly water hardening process Polymer is rapidly substituted for the gypsum cast product which has been plentifully used in medical treatment. Until currently, prior researches have a tendency to focusing the analysis about chemical creation expense and reaction quality rather than the issue about optimization of the process for this polymerization. In the polymerization process which has been accomplished with actual same chemical creation expense, there has been a problem which is the possibility of getting a different result. This is because the optimization of respectively control factors is not accomplished which affect at polymerization process. Therefore, this research sees the chemical qualities of casting tape Polymer, consequently selects the polymerization process which is suitable. And, by using a experimental design, this research will evaluate the affects which the respective factors have on remaining NCO and viscosity. futhermore, this research will carry out the process optimization which can get the above results.

  • PDF