• Title/Summary/Keyword: Pre-construction

Search Result 1,192, Processing Time 0.024 seconds

Probabilistic analysis of anisotropic rock slope with reinforcement measures

  • Zoran Berisavljevic;Dusan Berisavljevic;Milos Marjanovic;Svetlana Melentijevic
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-301
    • /
    • 2023
  • During the construction of E75 highway through Grdelica gorge in Serbia, a major failure occurred in the zone of reinforced rock slope. Excavation was performed in highly anisotropic Paleozoic schist rock formation. The reinforcement consisted of the two rows of micropile wall with pre-stressed anchors. Forces in anchors were monitored with load cells while benchmarks were installed for superficial displacement measurements. The aim of the study is to investigate possible causes of instability considering different probability distributions of the strength of discontinuities and anchor bond strength by applying different optimization techniques for finding the critical failure surface. Even though the deterministic safety factor value is close to unity, the probability of failure is governed by variability of shear strength of anisotropic planes and optimization method used for locating the critical sliding surface. The Cuckoo search technique produces higher failure probabilities compared to the others. Depending on the assigned statistical distribution of input parameters, various performance functions of the factor of safety are obtained. The probability of failure is insensitive to the variation of bond strength. Different sampling techniques should yield similar results considering that the sufficient number of safety factor evaluations is chosen to achieve converged solution.

Impact of Estuarine Dams on the Estuarine Parameter Space and Sediment Flux Decomposition: Idealized Numerical Modeling Study

  • Figueroa, Steven M.;Lee, Guan-hong;Chang, Jongwi;Lagamayo, Kenneth D.;Jung, Nathalie W.;Son, Minwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.276-276
    • /
    • 2022
  • Estuarine dams are constructed for securing freshwater resources, flood control, and improving upstream navigability. However, their impact on estuarine currents, stratification, and sediment fluxes is not well understood. To develop a general understanding, an idealized modeling study was carried out. Tide and river forcing were varied to produce strongly stratified, partially mixed, periodically stratified, and well-mixed estuaries. Each model ran for one year. Next, the models were subject to the construction of an estuarine dam and run for another year. Then, the pre- and post-dam conditions were compared. Results showed that estuarine dams can amplify the tidal range and reduce the tidal currents. The post-dam estuaries tended to be a salt wedge during freshwater discharge and a bay during no freshwater discharge. For all estuaries, the estuarine turbidity maximum moved seaward, and the suspended sediment concentrations tended to decrease. In terms of sediment flux mechanisms, the estuarine dam increased the seaward river runoff for cases with strong river, and increased the landward tidal pumping for cases with strong tides.

  • PDF

Studies on seismic performance of the new section steel beam-wall connection joint

  • Weicheng Su;Jian Liu;Changjiang Liu;Chiyu Luo;Weihua Ye;Yaojun Deng
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.501-519
    • /
    • 2023
  • This paper introduces a new hybrid structural connection joint that combines shear walls with section steel beams, fundamentally resolving the construction complexity issue of requiring pre-embedded connectors in the connection between shear walls and steel beams. Initially, a quasi-static loading scheme with load-deformation dual control was employed to conduct low-cycle repeated loading experiments on five new connection joints. Data was acquired using displacement and strain gauges to compare the energy dissipation coefficients of each specimen. The destruction process of the new connection joints was meticulously observed and recorded, delineating it into three stages. Hysteresis curves and skeleton curves of the joint specimens were plotted based on experimental results, summarizing the energy dissipation performance of the joints. It's noteworthy that the addition of shear walls led to an approximate 17% increase in the energy dissipation coefficient. The energy dissipation coefficients of dog-bone-shaped connection joints with shear walls and cover plates reached 2.043 and 2.059, respectively, exhibiting the most comprehensive hysteresis curves. Additionally, the impact of laminated steel plates covering composite concrete floors on the stiffness of semi-rigid joint ends under excessive stretching should not be disregarded. A comparison with finite element analysis results yielded an error of merely 2.2%, offering substantial evidence for the wide-ranging application prospects of this innovative joint in seismic performance.

Utilization of deep learning-based metamodel for probabilistic seismic damage analysis of railway bridges considering the geometric variation

  • Xi Song;Chunhee Cho;Joonam Park
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.469-479
    • /
    • 2023
  • A probabilistic seismic damage analysis is an essential procedure to identify seismically vulnerable structures, prioritize the seismic retrofit, and ultimately minimize the overall seismic risk. To assess the seismic risk of multiple structures within a region, a large number of nonlinear time-history structural analyses must be conducted and studied. As a result, each assessment requires high computing resources. To overcome this limitation, we explore a deep learning-based metamodel to enable the prediction of the mean and the standard deviation of the seismic damage distribution of track-on steel-plate girder railway bridges in Korea considering the geometric variation. For machine learning training, nonlinear dynamic time-history analyses are performed to generate 800 high-fidelity datasets on the seismic response. Through intensive trial and error, the study is concentrated on developing an optimal machine learning architecture with the pre-identified variables of the physical configuration of the bridge. Additionally, the prediction performance of the proposed method is compared with a previous, well-defined, response surface model. Finally, the statistical testing results indicate that the overall performance of the deep-learning model is improved compared to the response surface model, as its errors are reduced by as much as 61%. In conclusion, the model proposed in this study can be effectively deployed for the seismic fragility and risk assessment of a region with a large number of structures.

Investigation of rate dependent shear bond properties of concrete masonry mortar joints under high-rate loading

  • John E. Hatfield;Genevieve L. Pezzola;John M. Hoemann;James S. Davidson
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.519-533
    • /
    • 2024
  • Many materials including cementitious concrete-type materials undergo material property changes during high-rate loading. There is a wealth of research regarding this phenomenon for concrete in compression and tension. However, there is minimal knowledge about how mortar material used in concrete masonry unit (CMU) construction behaves in high-rate shear loading. A series of experiments was conducted to examine the bond strength of mortar bonded to CMU units under high-rate shear loading. A novel experimental setup using a shock tube and dynamic ram were used to load specially constructed shear triplets in a double lap shear configuration with no pre-compression. The Finite Element Method was leveraged in conjunction with data from the experimental investigation to establish if the shear bond between concrete masonry units and mortar exhibits any rate dependency. An increase in shear bond strength was observed when loaded at a high strain rate. This data indicates that the CMU-mortar bond exhibits a rate dependent strength change and illustrates the need for further study of the CMU-mortar interface characteristics at high strain rates.

Investigation of the effect of internal curing as a novel method for improvement of post-fire properties of high-performance concrete

  • Moein Mousavi;Habib Akbarzadeh Bengar
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.309-324
    • /
    • 2024
  • Internal curing, a widely used method for mitigating early-age shrinkage in concrete, also offers notable advantages for concrete durability. This paper explores the potential of internal curing by partial replacement of sand with fine lightweight aggregate for enhancing the behavior of high-performance concrete at elevated temperatures. Such a technique may prove economical and safe for the construction of skyscrapers, where explosive spalling of high-performance concrete in fire is a potential hazard. To reach this aim, the physico-mechanical features of internally cured high-strength concrete specimens, including mass loss, compressive strength, strain at peak stress, modulus of elasticity, stress-strain curve, toughness, and flexural strength, were investigated under different temperature exposures; and to predict some of these mechanical properties, a number of equations were proposed. Based on the experimental results, an advanced stress-strain model was proposed for internally cured high-performance concrete at different temperature levels, the results of which agreed well with the test data. It was observed that the replacement of 10% of sand with pre-wetted fine lightweight expanded clay aggregate (LECA) not only did not reduce the compressive strength at ambient temperature, but also prevented explosive spalling and could retain 20% of its ambient compressive strength after heating up to 800℃. It was then concluded that internal curing is an excellent method to enhance the performance of high-strength concrete at elevated temperatures.

An Experimental Study on the Flexural Behavior of Prestressed Composite Double T-Beams (프리스트레스트 강합성 Double T-Beam의 휨거동 특성에 관한 실험적 연구)

  • Hong, Sung-Nam;Kim, Kwang-Soo;Han, Kyung-Bong;Park, Sun-Kyu;Yoo, Byoung-Eok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.49-56
    • /
    • 2007
  • The existing Double T-Beams have been positively constructed in America and Europe due to their elegant appearance and simple section shapes. However, there are some problems; thery are relatively weak in the structural resistance, and need to use somewhat limited and complicated construction methods. In this paper, new composite beams made of concrete and steel are proposed, by taking adventage of their merits in an effort to solve thess controversial problems. In addition, feasibility is presented in developing composite Double T-Beams by introducing pre-stressing forces as well to enhance structural safety.

Structural Safety Evaluation of Stabbing System for Pre-Piling Jacket Substructure under Construction (프리파일링 자켓 하부구조물용 스태빙시스템의 시공중 구조안전성 평가)

  • Youngcheol Oh;Jaeyong Ryoo;Daeyong Lee
    • Journal of Wind Energy
    • /
    • v.13 no.3
    • /
    • pp.79-87
    • /
    • 2022
  • A stabbing system is an underwater jointing structure for positioning the jacket substructure for offshore wind power on top of a pile foundation that is already installed in the seabed. In this paper, the structural safety of the stabbing system currently being developed in South Korea was evaluated through finite element analysis. For this study, conformity of the finite element modeling technique for a gripper (hydraulic cylinder) was reviewed, and the structural safety of the stabbing system was evaluated based on the stress safety factor under three design load combinations (combinations of vertical, shear, and moment loads). From the analysis, it was verified that the pile foundation and the stabbing system mounted on top of it are structurally safe according to the stress safety factor, and there will be no interference between major structural components (i.e., guide cone and pile foundation) due to rotation of the guide cone at the end of the jacket leg.

Development and assessment of pre-release discharge technology for response to flood on deteriorated reservoirs dealing with abnormal weather events (이상기후대비 노후저수지 홍수 대응을 위한 사전방류 기술개발 및 평가)

  • Moon, Soojin;Jeong, Changsam;Choi, Byounghan;Kim, Seungwook;Jang, Daewon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.775-784
    • /
    • 2023
  • With the increasing trend of extreme rainfall that exceeds the design frequency of man-made structures due to extreme weather, it is necessary to review the safety of agricultural reservoirs designed in the past. However, there are no local government-managed reservoirs (13,685) that can be discharged in an emergency, except for reservoirs over a certain size under the jurisdiction of the Korea Rural Affairs Corporation. In this case, it is important to quickly deploy a mobile siphon to the site for preliminary discharge, and this study evaluated the applicability of a mobile siphon with a diameter of 200 mm, a minimum water level difference of 6 m, 420 (m2/h), and 10,000 (m2/day), which can perform both preliminary and emergency discharge functions, to the Yugum Reservoir in Gyeongju City. The test bed, Yugum Reservoir, is a facility that was completed in 1945 and has been in use for about 78 years. According to the hydrological stability analysis, the lowest height of the current dam crest section is 27.15 (EL.m), which is 0.29m lower than the reviewed flood level of 27.44 (EL.m), indicating that there is a possibility of lunar flow through the embankment, and the headroom is insufficient by 1.72 m, so it was reviewed as not securing hydrological safety. The water level-volume curve was arbitrarily derived because it was difficult to clearly establish the water level-flow relationship curve of the reservoir since the water level-flow measurement was not carried out regularly, and based on the derived curve, the algorithm for operating small and medium-sized old reservoirs was developed to consider the pre-discharge time, the amount of spillway discharge, and to predict the reservoir lunar flow time according to the flood volume by frequency, thereby securing evacuation time in advance and reducing the risk of collapse. Based on one row of 200 mm diameter mobile siphons, the optimal pre-discharge time to secure evacuation time (about 1 hour) while maintaining 80% of the upper limit water level (about 30,000 m2) during a 30-year flood was analyzed to be 12 hours earlier. If the pre-discharge technology utilizing siphons for small and medium-sized old reservoirs and the algorithm for reservoir operation are implemented in advance in case of abnormal weather and the decision-making of managers is supported, it is possible to secure the safety of residents in the risk area of reservoir collapse, resolve the anxiety of residents through the establishment of a support system for evacuating residents, and reduce risk factors by providing risk avoidance measures in the event of a reservoir risk situation.

The Change in Modeling Ability of Science-Gifted Students through the Co-construction of Scientific Model (과학적 모델의 사회적 구성 수업을 통한 과학 영재 학생들의 모델링 능력 변화)

  • Park, Hee-Kyung;Choi, Jong-Rim;Kim, Chan-Jong;Kim, Heui-Baik;Yoo, Junehee;Jang, Shinho;Choe, Seung-Urn
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.1
    • /
    • pp.15-28
    • /
    • 2016
  • The purpose of this study is to investigate the changes of students' modeling ability in terms of 'meta-modeling knowledge' and 'modeling practice' through co-construction of scientific model. Co-construction of scientific model instructions about astronomy were given to 41 middle-school students. The students were given a before and after instruction modeling ability tests. The results show that students' 'meta-modeling knowledge' has changed into a more scientifically advanced thinking about models and modeling after the instruction. Students were able to be aware that 'they could express their thoughts using models', 'many models could be used to explain a single phenomena' and 'scientific models may change' through co-construction modeling process. The change in the 'modeling practice' of the students was divided into four cases (the level improving, the level lowering, the high-level maintaining, the low-level maintaining) depending on the change of pre-posttest levels. The modeling practice level of most students has improved through the instruction. These changes were influenced by co-construction process that provides opportunities to compete and compare their models to other models. Meanwhile, the modeling practice level of few students has lowered or maintained low level. Science score of these students at school was relatively high and they thought that the goal of learning is to get a higher score in exams by finding the correct answer. This means that students who were kept well under traditional instruction may feel harder to adapt to co-construction of scientific model instruction, which focuses more on the process of constructing knowledge based on evidences.