• Title/Summary/Keyword: Pre-commissioning test

Search Result 6, Processing Time 0.017 seconds

Linearity Optimization of DC CT and a Study on the Application of HVDC System (HVDC DC CT 선형성 최적화 및 시스템 적용에 대한 연구)

  • Choi, Yong-Kil;Lee, Eun-Jae;Choi, Ho-Seok;Lee, Wook-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.758-763
    • /
    • 2014
  • These days, the advantages of DC power system are consistently stand out in korea that was a small power loss and high stability. Needs of DC power transmission technology is focused In the midst of a smart grid and environment friendly generation technology boom that is needed for next generation technology. Researches and businesses for HVDC(High Voltage Direct Current) system has been began. But, Needs of HVDC equipment and system commissioning technology are not on the rise until now. In particular, South Korea's HVDC technology is after the foot runner of advanced country and company. In addition, There is no experience for equipment verification and commissioning technology. And Experts of HVDC are rare. Who has been fully understood hardware and system as a whole, and identified all the equipment's characteristic. Recently, Academia and industry are recognized a needs of HVDC technology. But it does not received a recognition of technical value. In this paper, introduce issues when we apply the IEEE's verification method for HVDC system, especially DC current measurement system, DC CT(Direct Current Transformer), among the HVDC equipments. And Proposes remedial methods on the issue in order to recognize the necessity that was HVDC equipments's verification and commissioning technology research should be focused on.

Effects of Ambient Temperature Change on the Internal Pressure Change of Multi-Layered Subsea Pipeline (주위 온도변화가 다층구조 해저 파이프라인 내부 압력변화에 미치는 영향)

  • Yang, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.772-779
    • /
    • 2019
  • The subsea pipeline has received considerable attention as a high-value-added industry linked to the energy and steel industries including natural resource development. The design and installation of the subsea pipeline require a variety of key technologies to carry out the project. In particular, a thorough pre-verification process through pre-commissioning is essential for the safe operation of the subsea pipeline. The hydrotesting stage in the pre-commissioning process of the subsea pipeline is known to be affected significantly by the ambient temperature change; however, there is a little study based on the theoretical and numerical approach. In this study, the method of predicting the internal temperature change using the transient heat transfer method for the stage of hydrotesting during the pre-commissioning process of the subsea pipeline and the prediction method of the pressure variation in the pipeline using it were proposed. The predicted results were compared with field test results and its effectiveness was verified. The proposed analysis procedure is expected to contribute to the productivity improvement of the subsea pipeline installation project by enabling the prediction of pressure variation through pipeline heat transfer simulation from the initial design stage of the subsea pipeline installation project.

Yeonggwang #1/2 steam condenser leakage repair works (영광 #1/2 복수기 누수부 보수공사)

  • 이상철;공창식
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.117-119
    • /
    • 2003
  • Power plant efficiency and availability depend greatly on condenser performance. However, during commissioning of Yeonggwang #1/2 steam condenser sodium leakage occurred, because of tube to tubesheet only roll expanding. Therefore this report is explaining that pre-test for the shake of improvement reliable repair processes & selected sampling tube re-expansion in-situ applications.

  • PDF

Commissioning result of the KSTAR in-vessel cryo-pump

  • Chang, Y.B.;Lee, H.J.;Park, Y.M.;Lee, Y.J.;Kwag, S.W.;Song, N.H.;Park, D.S.;Joo, J.J.;Moon, K.M.;Kim, N.W.;Yang, H.L.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.53-58
    • /
    • 2013
  • KSTAR in-vessel cryo-pump has been installed in the vacuum vessel top and bottom side with up-down symmetry for the better plasma density control in the D-shape H-mode. The cryogenic helium lines of the in-vessel cryo-pump are located at the vertical positions from the vacuum vessel torus center 2,000 mm. The inductive electrical potential has been optimized to reduce risk of electrical breakdown during plasma disruption. In-vessel cryo-pump consists of three parts of coaxial circular shape components; cryo-panel, thermal shield and particle shield. The cryo-panel is cooled down to below 4.5 K. The cryo-panel and thermal shields were made by Inconel 625 tube for higher mechanical strength. The thermal shields and their cooling tubes were annealed in air environment to improve the thermal radiation emissivity on the surface. Surface of cryo-panel was electro-polished to minimize the thermal radiation heat load. The in-vessel cryo-pump was pre-assembled on a test bed in 180 degree segment base. The leak test was carried out after the thermal shock between room temperature to $LN_2$ one before installing them into vacuum vessel. Two segments were welded together in the vacuum vessel and final leak test was performed after the thermal shock. Commissioning of the in-vessel cryo-pump was carried out using a temporary liquid helium supply system.

Preliminary Design of GBAS Onboard Test Equipment

  • Jeong, Myeong-Sook;Ko, Wan-Jin;Bae, Joong Won;Jun, Hyang Sig
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • When the ground subsystem of Ground Based Augmentation System(GBAS) is installed at the airport, the functions and performance of subsystem should be evaluated through ground and flight testing at the pre-commissioning phase. In the case of GBAS flight testing, it can be conducted by the existing flight check aircraft, but the GBAS ground testing requires the development of specially customized equipment to perform the ground testing. Therefore, this paper describes the preliminary design of GBAS onboard test equipment which can be independently used for the GBAS ground testing and flight testing on a car and an aircraft.

Software-In-the-Loop based Power Management System Modeling & Simulation for a Liquefied Natural Gas Carrier (SIL 기반 액화천연가스운반선 전력관리시스템의 모델링 및 시뮬레이션)

  • Lee, Kwangkook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1218-1224
    • /
    • 2017
  • With the increasing risk in building liquefied natural gas carriers (LNGC), pre-simulation of various scenarios is required for system integration and safe operation. In particular, the power management system (PMS) is an important part of the LNGC; it works in tight integration with the power control systems to achieve the desired performance and safety. To verify and improve unpredicted errors, we implemented a simulation model of power generation and consumption for testing PMS based on software-in-the-loop (SIL) method. To control and verify the PMS, numeric and physical simulation modeling was undertaken utilizing MATLAB/Simulink. In addition, the simulation model was verified with a load sharing test scenario for a sea trial. This simulation allows shipbuilders to participate in new value-added markets such as commissioning, installation, operation, and maintenance.