• Title/Summary/Keyword: Pre-commissioning

Search Result 18, Processing Time 0.028 seconds

Bayesian Theorem-based Prediction of Success in Building Commissioning

  • Park, Borinara
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.523-526
    • /
    • 2015
  • In recent years, building commissioning has often been part of a standard delivery practice in construction, particularly in the high-performance green building market, to ensure the building is designed and constructed per owner's requirements. Commissioning, therefore, intends to provide quality assurance that buildings perform as intended by the design and often helps achieve energy savings. Commissioning, however, is not as widely adopted as its potential benefits are perceived. Owners are still skeptical of the cost-effectiveness claims by energy management and commissioning professionals. One of the issues in the current commissioning practice is that not every project is guaranteed to benefit from the commissioning services. This, coupled with its added cost, the commissioning service is not acquired with great acceptance and confidence by building owners. To overcome this issue, this paper presents a unique methodology to enhance owner's predicting capability of the degree of success of commissioning service using the Bayesian theorem. The paper analyzes a situation where a future building owner wants to use a pre-commissioning in an attempt to refine the success rate of the future commissioned building performance. The author proposes the Bayesian theorem based framework to improve the current commissioning practice where building owners are not given accurate information how much successful their projects are going to be in terms of energy savings from the commissioning service. What should be provided to the building owners who consider their buildings to be commissioned is that they need some indicators how likely their projects benefit from the commissioning process. Based on this, the owners can make better informed decisions whether or not they acquire a commissioning service.

  • PDF

Challenges and Strategies for Commissioning of FLNG

  • Lee, Dong Hyun;Seo, Kwang Su;Yeo, Jong Su;Kim, Myung Ki
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.129-135
    • /
    • 2016
  • After the construction of offshore plants, the function and integrity of system in offshore plants should be commissioned. As the executor of many FLNG projects, Samsung Heavy Industries Co., Ltd has faced some challenges for commissioning which are not similar to those in other offshore project. This study shows the differences between the commissioning of typical offshore projects and the one of FLNG projects. By the characteristics of offshore, performing the commissioning activity of FLNG near shipyard as much as possible reduces the risk of malfunction. The possible solutions to achieve these strategies are introduced.

Study on the Change of Relative Humidity in Subsea Pipeline According to Drying Method (건조 공법에 따른 해저 파이프라인 내부 상대습도 변화 특성 연구)

  • Yang, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.406-413
    • /
    • 2022
  • The subsea pipeline pre-commissioning stage consists of the following processes: Flooding, Venting, Hydrotesting, Dewatering, Drying, and N2 Purging. Among these processes, drying and nitrogen purging processes are stipulated to reduce and maintain the relative humidity below dew point to prevent the generation of hydrate and the risk of gas explosion in the pipeline during operation. The purpose of this study is to develop an analysis method for the air drying and nitrogen purging process during pre-commissioning of the subsea pipeline, and to evaluate the applicability of the analysis method through comparison with on-site measurement results. An analysis method using Computational Fluid Dynamics (CFD) was introduced and applied as a method for evaluating the relative humidity inside a subsea pipeline, and it was confirmed that analysis results were in good agreement with the on-site measurement results for the air drying and nitrogen purging process of the offshore pipeline. If the developed air drying and nitrogen purging analysis method are used as pre-engineering tools for pre-commissioning of subsea pipelines in the future, it is expected to have a significant impact on the improvement of work productivity.

Developing Optimal Pre-Cooling Model Based on Statistical Analysis of BEMS Data in Air Handling Unit (BEMS 데이터의 통계적 분석에 기반한 공조기 최적 예냉운전 모델 개발)

  • Choi, Sun-Kyu;Kwak, Ro-Yeul;Goo, Sang-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.10
    • /
    • pp.467-473
    • /
    • 2014
  • Since the operating conditions of HVAC systems are different from those for which they are designed, on-going commissioning is required to optimize the energy consumed and the environment in the building. This study presents a methodology to analyze operational data and its applications. A predicted operation model is to be produced through a statistical data analysis using multiple regressions in SPSS. In this model, the dependent variable is the pre-cooling time, and the independent variables include the power output of the supply air inverter during pre-cooling, the supply air set temperature during pre-cooling, the indoor temperature-indoor set temperature just before pre-cooling, supply heat capacity, and the lowest outdoor air temperature during non-cooling/non-heating hours. The correlation coefficient R2 of the multiple regression model between the pre-cooling hour and the internal/external factors is of 0.612, and this could be used to provide information related to energy conservation and operating guidance.

Effects of Ambient Temperature Change on the Internal Pressure Change of Multi-Layered Subsea Pipeline (주위 온도변화가 다층구조 해저 파이프라인 내부 압력변화에 미치는 영향)

  • Yang, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.772-779
    • /
    • 2019
  • The subsea pipeline has received considerable attention as a high-value-added industry linked to the energy and steel industries including natural resource development. The design and installation of the subsea pipeline require a variety of key technologies to carry out the project. In particular, a thorough pre-verification process through pre-commissioning is essential for the safe operation of the subsea pipeline. The hydrotesting stage in the pre-commissioning process of the subsea pipeline is known to be affected significantly by the ambient temperature change; however, there is a little study based on the theoretical and numerical approach. In this study, the method of predicting the internal temperature change using the transient heat transfer method for the stage of hydrotesting during the pre-commissioning process of the subsea pipeline and the prediction method of the pressure variation in the pipeline using it were proposed. The predicted results were compared with field test results and its effectiveness was verified. The proposed analysis procedure is expected to contribute to the productivity improvement of the subsea pipeline installation project by enabling the prediction of pressure variation through pipeline heat transfer simulation from the initial design stage of the subsea pipeline installation project.

Linearity Optimization of DC CT and a Study on the Application of HVDC System (HVDC DC CT 선형성 최적화 및 시스템 적용에 대한 연구)

  • Choi, Yong-Kil;Lee, Eun-Jae;Choi, Ho-Seok;Lee, Wook-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.758-763
    • /
    • 2014
  • These days, the advantages of DC power system are consistently stand out in korea that was a small power loss and high stability. Needs of DC power transmission technology is focused In the midst of a smart grid and environment friendly generation technology boom that is needed for next generation technology. Researches and businesses for HVDC(High Voltage Direct Current) system has been began. But, Needs of HVDC equipment and system commissioning technology are not on the rise until now. In particular, South Korea's HVDC technology is after the foot runner of advanced country and company. In addition, There is no experience for equipment verification and commissioning technology. And Experts of HVDC are rare. Who has been fully understood hardware and system as a whole, and identified all the equipment's characteristic. Recently, Academia and industry are recognized a needs of HVDC technology. But it does not received a recognition of technical value. In this paper, introduce issues when we apply the IEEE's verification method for HVDC system, especially DC current measurement system, DC CT(Direct Current Transformer), among the HVDC equipments. And Proposes remedial methods on the issue in order to recognize the necessity that was HVDC equipments's verification and commissioning technology research should be focused on.

Commissioning Results of the Warm Compression System for the KSTAR Helium Refrigeration System (KSTAR 헬륨냉동기의 압축시스템 시운전 결과)

  • Park, Dong-Seong;Chang, Hyun-Sik;Joo, Jae-Joon;Moon, Kyung-Mo;Cho, Kwang-Woon;Kim, Yang-Soo;Bak, Ju-Shik;Kwon, Il-Keun;Cho, Myeon-Chul;Yang, Seung-Han
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.125-130
    • /
    • 2008
  • The main components of the KSTAR helium refrigeration system (HRS) can be classified into the warm compression system (WCS) and the cryogenic devices according to the operating temperature levels. The WCS itself consists of the compressor station (C/S) and the oil removal system (ORS). The process helium is compressed from 1 bar to 22 bar maximum in the C/S and downstream, the ORS removes the oil mixed in the helium to less than 10 ppbw as per the operation criteria of the cryogenic devices of the KSTAR HRS. After the installation, the pre-commissioning and commissioning activities were started on July, 2007. Before the start-up of the C/S, vibration measurement and the skid reinforcement jobs were performed for stable operation of the C/S. The results of the WCS performance tests met the requirements of the KSTAR HRS but satisfied the vibration level criteria only at the compressors' full load condition.

  • PDF

Yeonggwang #1/2 steam condenser leakage repair works (영광 #1/2 복수기 누수부 보수공사)

  • 이상철;공창식
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.117-119
    • /
    • 2003
  • Power plant efficiency and availability depend greatly on condenser performance. However, during commissioning of Yeonggwang #1/2 steam condenser sodium leakage occurred, because of tube to tubesheet only roll expanding. Therefore this report is explaining that pre-test for the shake of improvement reliable repair processes & selected sampling tube re-expansion in-situ applications.

  • PDF

COMMISSIONING RESULT OF THE KSTAR HELIUM REFRIGERATION SYSTEM

  • Park, Dong-Seong;Chang, Hyun-Sik;Joo, Jae-Joon;Moon, Kyung-Mo;Cho, Kwang-Woon;Kim, Yang-Soo;Bak, Joo-Shik;Cho, Myeon-Chul;Kwon, Il-Keun;Andrieu, Frederic;Beauvisage, Jerome;Desambrois, Stephane;Fauve, Eric
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.467-476
    • /
    • 2008
  • To keep the superconducting (SC) magnet coils of KSTAR at proper operating conditions, not only the coils but also other cold components, such as thermal shields (TS), magnet structures, SC bus-lines (BL), and current leads (CL) must be maintained at their respective cryogenic temperatures. A helium refrigeration system (RRS) with an exergetic equivalent cooling power of 9 kW at 4.5 K without liquid nitrogen ($LN_2$) pre-cooling has been manufactured and installed. The main components of the KST AR helium refrigeration system (HRS) can be classified into the warm compression system (WCS) and the cryogenic devices according to the operating temperature levels. The process helium is compressed from 1 bar to 22 bar passing through the WCS and is supplied to cryogenic devices. The main components of cryogenic devices are consist of cold box (C/B) and distribution box (D/B). The C/B cool-down and make the various cryogenic helium for the KSTAR Tokamak and the various cryogenic helium is distributed by the D/B as per the KSTAR requirement. In this proceeding, we will present the commissioning results of the KSTAR HRS. Circuits which can simulate the thermal loads and pressure drops corresponding to the cooling channels of each cold component of KSTAR have been integrated into the helium distribution system of the HRS. Using those circuits, the performance and the capability of the HRS, to fulfill the mission of establishing the appropriate operating condition for the KSTAR SC magnet coils, have been successfully demonstrated.

Commissioning results of the KSTAR helium refrigeration system (KSTAR 저온헬륨설비 시운전 결과)

  • Cho, K.W.;Chang, H.S.;Park, D.S.;Joo, J.J.;Moon, K.M.;Kim, Y.S.;Bak, J.S.;Yang, S.H.;Fauve, E.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.64-68
    • /
    • 2009
  • To keep the superconducting (SC) magnet coils of KSTAR at proper operating conditions, not only the coils but also other cold components, such as thermal shields (TS), magnet structures, SC bus-lines (BL), and current leads (CL) must be maintained at their respective cryogenic temperatures. A helium refrigeration system (HRS) with an exergetic equivalent cooling power of 9kW at 4.5K without liquid nitrogen $(LN_2)$ pre-cooling has been manufactured and installed for such purposes. In this proceeding, we will present the commissioning and initial operation results of the KSTAR HRS. Circuits which can simulate the thermal loads and pressure drops corresponding to the cooling channels of each cold component of KSTAR have been integrated into the helium distribution system of the HRS. Using those circuits, the performance and the capability of the HRS, to fulfill the mission of establishing the appropriate operating condition for the KSTAR SC magnet coils, have been successfully demonstrated.