• 제목/요약/키워드: Ppd gene

검색결과 10건 처리시간 0.026초

Identification of Microsatellite Markers Linked to Photoperiod Insensitive Gene Ppd-D1a in Wheat

  • Heo, Hwa-Young;Talbert, Luther;Blake, Nancy;Sherman, Jamie;Suh, Sae-Jung;Kim, Dea-Wook;Kim, Si-Ju
    • 한국작물학회지
    • /
    • 제52권1호
    • /
    • pp.12-16
    • /
    • 2007
  • To facilitate breeding of lines with either the Ppd-D1a or ppd-d1a, we screened 342 $F_2$ progenies from a cross between Laura (photoperiod insensitive, Ppd-D1a) spring wheat and SWP5304 (photoperiod sensitive, ppd-d1a) for their time to heading under 10 hour day length, and with a set of 37 microsatellite primers previously mapped to chromosome 2D. Bulk segregant analysis was used to identify tow linked microsatellite loci. The Ppd-D1a locus was flanked by Xgwm484 with 13.7 cM distance and Xgwm455 with 27 cM. These markers may be useful in selection of the desired photoperiod sensitivity in segregating populations grown in Northern latitude.

Modification of ginsenoside saponin composition via the CRISPR/Cas9-mediated knockout of protopanaxadiol 6-hydroxylase gene in Panax ginseng

  • Choi, Han Suk;Koo, Hyo Bin;Jeon, Sung Won;Han, Jung Yeon;Kim, Joung Sug;Jun, Kyong Mi;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • 제46권4호
    • /
    • pp.505-514
    • /
    • 2022
  • Background: The roots of Panax ginseng contain two types of tetracyclic triterpenoid saponins, namely, protopanaxadiol (PPD)-type saponins and protopanaxatiol (PPT)-type saponins. In P. ginseng, the protopanaxadiol 6-hydroxylase (PPT synthase) enzyme catalyses protopanaxatriol (PPT) production from protopanaxadiol (PPD). In this study, we constructed homozygous mutant lines of ginseng by CRISPR/Cas9-mediated mutagenesis of the PPT synthase gene and obtained the mutant ginseng root lines having complete depletion of the PPT-type ginsenosides. Methods: Two sgRNAs (single guide RNAs) were designed for target mutations in the exon sequences of the two PPT synthase genes (both PPTa and PPTg sequences) with the CRISPR/Cas9 system. Transgenic ginseng roots were generated through Agrobacterium-mediated transformation. The mutant lines were screened by ginsenoside analysis and DNA sequencing. Result: Ginsenoside analysis revealed the complete depletion of PPT-type ginsenosides in three putative mutant lines (Cr4, Cr7, and Cr14). The reduction of PPT-type ginsenosides in mutant lines led to increased accumulation of PPD-type ginsenosides. The gene editing in the selected mutant lines was confirmed by targeted deep sequencing. Conclusion: We have established the genome editing protocol by CRISPR/Cas9 system in P. ginseng and demonstrated the mutated roots producing only PPD-type ginsenosides by depleting PPT-type ginsenosides. Because the pharmacological activity of PPD-group ginsenosides is significantly different from that of PPT-group ginsenosides, the new type of ginseng mutant producing only PPD-group ginsenosides may have new pharmacological characteristics compared to wild-type ginseng. This is the first report to generate target-induced mutations for the modification of saponin biosynthesis in Panax species using CRISPR-Cas9 system.

Alteration of Panax ginseng saponin composition by overexpression and RNA interference of the protopanaxadiol 6-hydroxylase gene (CYP716A53v2)

  • Park, Seong-Bum;Chun, Ju-Hyeon;Ban, Yong-Wook;Han, Jung Yeon;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • 제40권1호
    • /
    • pp.47-54
    • /
    • 2016
  • Background: The roots of Panax ginseng contain noble tetracyclic triterpenoid saponins derived from dammarenediol-II. Dammarene-type ginsenosides are classified into the protopanaxadiol (PPD) and protopanaxatriol (PPT) groups based on their triterpene aglycone structures. Two cytochrome P450 (CYP) genes (CYP716A47 and CYP716A53v2) are critical for the production of PPD and PPT aglycones, respectively. CYP716A53v2 is a protopanaxadiol 6-hydroxylase that catalyzes PPT production from PPD in P. ginseng. Methods: We constructed transgenic P. ginseng lines overexpressing or silencing (via RNA interference) the CYP716A53v2 gene and analyzed changes in their ginsenoside profiles. Result: Overexpression of CYP716A53v2 led to increased accumulation of CYP716A53v2 mRNA in all transgenic roots compared to nontransgenic roots. Conversely, silencing of CYP716A53v2 mRNA in RNAi transgenic roots resulted in reduced CYP716A53v2 transcription. HPLC analysis revealed that transgenic roots overexpressing CYP716A53v2 contained higher levels of PPT-group ginsenosides ($Rg_1$, Re, and Rf) but lower levels of PPD-group ginsenosides (Rb1, Rc, $Rb_2$, and Rd). By contrast, RNAi transgenic roots contained lower levels of PPT-group compounds and higher levels of PPD-group compounds. Conclusion: The production of PPD- and PPT-group ginsenosides can be altered by changing the expression of CYP716A53v2 in transgenic P. ginseng. The biological activities of PPD-group ginsenosides are known to differ from those of the PPT group. Thus, increasing or decreasing the levels of PPT-group ginsenosides in transgenic P. ginseng may yield new medicinal uses for transgenic P. ginseng.

Computational and experimental characterization of estrogenic activities of 20(S, R)-protopanaxadiol and 20(S, R)-protopanaxatriol

  • Zhang, Tiehua;Zhong, Shuning;Hou, Ligang;Wang, Yongjun;Xing, XiaoJia;Guan, Tianzhu;Zhang, Jie;Li, Tiezhu
    • Journal of Ginseng Research
    • /
    • 제44권5호
    • /
    • pp.690-696
    • /
    • 2020
  • Background: As the main metabolites of ginsenosides, 20(S, R)-protopanaxadiol [PPD(S, R)] and 20(S, R)-protopanaxatriol [PPT(S, R)] are the structural basis response to a series of pharmacological effects of their parent components. Although the estrogenicity of several ginsenosides has been confirmed, however, the underlying mechanisms of their estrogenic effects are still largely unclear. In this work, PPD(S, R) and PPT(S, R) were assessed for their ability to bind and activate human estrogen receptor α (hERα) by a combination of in vitro and in silico analysis. Methods: The recombinant hERα ligand-binding domain (hERα-LBD) was expressed in E. coli strain. The direct binding interactions of ginsenosides with hERα-LBD and their ERα agonistic potency were investigated by fluorescence polarization and reporter gene assays, respectively. Then, molecular dynamics simulations were carried out to simulate the binding modes between ginsenosides and hERα-LBD to reveal the structural basis for their agonist activities toward receptor. Results: Fluorescence polarization assay revealed that PPD(S, R) and PPT(S, R) could bind to hERα-LBD with moderate affinities. In the dual luciferase reporter assay using transiently transfected MCF-7 cells, PPD(S, R) and PPT(S, R) acted as agonists of hERα. Molecular docking results showed that these ginsenosides adopted an agonist conformation in the flexible hydrophobic ligand-binding pocket. The stereostructure of C-20 hydroxyl group and the presence of C-6 hydroxyl group exerted significant influence on the hydrogen bond network and steric hindrance, respectively. Conclusion: This work may provide insight into the chemical and pharmacological screening of novel therapeutic agents from ginsenosides.

20(S)-protopanaxadiol promotes the migration, proliferation, and differentiation of neural stem cells by targeting GSK-3β in the Wnt/GSK-3β/β-catenin pathway

  • Lin, Kaili;Liu, Bin;Lim, Sze-Lam;Fu, Xiuqiong;Sze, Stephen C.W.;Yung, Ken K.L.;Zhang, Shiqing
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.475-482
    • /
    • 2020
  • Background: Active natural ingredients, especially small molecules, have recently received wide attention as modifiers used to treat neurodegenerative disease by promoting neurogenic regeneration of neural stem cell (NSC) in situ. 20(S)-protopanaxadiol (PPD), one of the bioactive ingredients in ginseng, possesses neuroprotective properties. However, the effect of PPD on NSC proliferation and differentiation and its mechanism of action are incompletely understood. Methods: In this study, we investigated the impact of PPD on NSC proliferation and neuronal lineage differentiation through activation of the Wnt/glycogen synthase kinase (GSK)-3β/β-catenin pathway. NSC migration and proliferation were investigated by neurosphere assay, Cell Counting Kit-8 assay, and EdU assay. NSC differentiation was analyzed by Western blot and immunofluorescence staining. Involvement of the Wnt/GSK3β/β-catenin pathway was examined by molecular simulation and Western blot and verified using gene transfection. Results: PPD significantly promoted neural migration and induced a significant increase in NSC proliferation in a time- and dose-dependent manner. Furthermore, a remarkable increase in anti-microtubule-associated protein 2 expression and decrease in nestin protein expression were induced by PPD. During the differentiation process, PPD targeted and stimulated the phosphorylation of GSK-3β at Ser9 and the active forms of β-catenin, resulting in activation of the Wnt/GSK-3β/β-catenin pathway. Transfection of NSCs with a constitutively active GSK-3β mutant at S9A significantly hampered the proliferation and neural differentiation mediated by PPD. Conclusion: PPD promotes NSC proliferation and neural differentiation in vitro via activation of the Wnt/GSK-3β/β-catenin pathway by targeting GSK-3β, potentially having great significance for the treatment of neurodegenerative diseases.

결핵균 항원 자극에 의한 결핵성 흉수 림프구의 IFN-${\gamma}$ mRNA 발현 (IFN-${\gamma}$mRNA Expression in Tuberculous Pleural Lymphocytes After in vitro Stimulation with M. tuberculosis Antigens)

  • 박재석;김윤섭;지영구;이계영
    • Tuberculosis and Respiratory Diseases
    • /
    • 제57권1호
    • /
    • pp.25-31
    • /
    • 2004
  • 연구배경 : IFN-${\gamma}$는 결핵균에 대한 숙주의 면역학적 방어기전에서 핵심적인 역할을 한다. 그러므로 결핵균 항원들이 IFN-${\gamma}$ 유전자 발현에 미치는 영향을 알아보는 것은 결핵균에 대한 숙주의 방어기전을 밝히고 이를 이용한 백신의 개발에 이용될 수 있을 것이다. 방 법 : 결핵성 흉막염 환자의 흉수에서 얻은 림프구 배양액에 결핵균(H37Rv), PPD, Ag85B, man-LAM, ara-LAM을 첨가하여 자극한 후 림프구의 IFN-${\gamma}$ mRNA의 발현 정도를 역전사 중합효소연쇄반응을 이용하여 비교하였다. 결 과 : 1) 결핵균(H37Rv)이 결핵성 흉수 림프구의 IFN-${\gamma}$ mRNA의 발현을 증가시켰다. 2) 결핵균 항원 중 PPD와 Ag85B는 결핵성 흉수 림프구의 IFN-${\gamma}$ mRNA의 발현을 증가시켰지만 man-LAM은 결핵성 흉수 림프구의 IFN-${\gamma}$ mRNA의 발현을 억제시켰다. 3) LAM 중에서 man-LAM은 용량이 증가함에 따라 결핵성 흉수 림프구의 IFN-${\gamma}$ mRNA의 발현의 억제 정도가 증가하였지만 ara-LAM의 경우 이와 같은 현상이 관찰되지 않았다. 결 론 : 결핵성 흉수 림프구의IFN-${\gamma}$ mRNA의 발현은 PPD와 Ag85B의 자극에 의해 항진되지만 man-LAM의 자극에 의해서는 억제되었다.

생쥐 생식소의 발달 단계에 따른 일주기성 유전자 발현에 관한 연구 (Expression of the Circadian Clock Genes in the Mouse Gonad)

  • 정미경;최윤정;정경화;김은아;정형민;이숙환;윤태기;채영규
    • 한국발생생물학회지:발생과생식
    • /
    • 제8권1호
    • /
    • pp.57-64
    • /
    • 2004
  • 본 연구는 생쥐의 난소 및 정소 조직에서 발달 단계에 따라 나타나는 일주기성 clock유전자의 발현과 단백질의 발현 양상을 알아보고자 하였다. 생쥐의 난소 및 정소에서 일주기성 변화와 연관된 유전자(Period1(Per1), Period2(Per2), Period3(Per3), Cryptochromel(Cry1), Cryptochrome2 (Cry2), Clock, Bmall)와 시교차 상핵에서 분비되어 표적 조직 또는 기관으로 전달되는 물질로 알려진 Prokineticin (Prok2)에 대 한 수용체들 (Prok1r과 Prok2r), PERI 단백질의 발현 양상을 발달 단계에 따라 (post partum day; ppd 1, 7, 10, 21, 35) 확인하였다. 주요 clock 유전자들은 생후 발달 단계에 따라 각각 다양한 발현양상을 보였다. 난소의 경우 많은 난포가 성장을 시작하는 시기인 생후 7일과 10일을 전후하여 발현량이 대부분 증가하는 것을 볼 수 있었으며, 정소의 경우에도 발달 단계에 따라 7일에서 발현이 증가하는 양상을 보였다. 특히 clock유전자들은 생후 7일과 10일에서 상대적으로 높은 발현 양상을 보였다 시교차 상핵에서 분비되어 표적기관으로 분비되는 것으로 알려진 Prok2의 수용체의 경우에도 주요 주기성 유전자들의 발현이 증가하는 것과 같은 시기에 발현이 높아지는 것을 확인할 수 있었고, 생식소 발달 초기에 강하게 발현되나 차후 점진적으로 감소하는 것을 확인할 수 있었다. 또한 PER1의 발현양상을 면역조직화학적 방법으로 확인한 결과, 난포의 각 발달 단계에서 난소 내 정상적인 난포의 과립세포와 난자에서 높게 발현되는 것을 알 수 있었고, 상기의 결과는 Perl 유전자의 발현 양상과 일치함을 확인할 수 있었다 또한 정소 내 Per1 유전자와 PER1 단백질의 발현은 모두 생후 10일과 21일에서 감소하는 경향을 보이나 성적으로 성숙됨에 따라 다시 증가하는 것을 확인할 수 있어, PER1 단백질은 생식소의 발생 단계별로 다양한 발현 양상의 차이를 보이며, 정자와 난자의 정상적인 발달에 밀접한 연관이 있음을 추론할 수 있었다. 본 연구의 결과, 일주기성 clock유전자들 중 특히 Per1이 생식소의 정상 발달에 중요하게 작용할 수 있음을 시사하여 차후 이에 대한 다양한 연구가 진행되어야 할 것으로 생각된다.

  • PDF

Differential Effects of Ginsenoside Metabolites on HERG K+ Channel Currents

  • Choi, Sun-Hye;Shin, Tae-Joon;Hwang, Sung-Hee;Lee, Byung-Hwan;Kang, Ji-Yeon;Kim, Hyeon-Joong;Oh, Jae-Wook;Bae, Chun-Sik;Lee, Soo-Han;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제35권2호
    • /
    • pp.191-199
    • /
    • 2011
  • The human ether-a-go-go-related gene (HERG) cardiac $K^+$ channels are one of the representative pharmacological targets for development of drugs against cardiovascular diseases such as arrhythmia. Panax ginseng has been known to exhibit cardioprotective effects. In a previous report we demonstrated that ginsenoside $Rg_3$ regulates HERG $K^+$ channels by decelerating deactivation. However, little is known about how ginsenoside metabolites regulate HERG $K^+$ channel activity. In the present study, we examined the effects of ginsenoside metabolites such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) on HERG $K^+$ channel activity by expressing human a subunits in Xenopus oocytes. CK induced a large persistent deactivatingtail current ($I_{deactivating-tail}$) and significantly decelerated deactivating current decay in a concentration-dependent manner. The $EC_{50}$ for persistent $I_{deactivating-tail}$ was $16.6{\pm}1.3$ ${\mu}M$. In contrast to CK, PPT accelerated deactivating-tail current deactivation. PPD itself had no effects on deactivating-tail currents, whereas PPD inhibited ginsenoside $Rg_3$-induced persistent $I_{deactivating-tail}$ and accelerated HERG $K^+$ channel deactivation in a concentration-dependent manner. These results indicate that ginsenoside metabolites exhibit differential regulation on Ideactivating-tail of HERG $K^+$ channel.

Kinetics of a Cloned Special Ginsenosidase Hydrolyzing 3-O-Glucoside of Multi-Protopanaxadiol-Type Ginsenosides, Named Ginsenosidase Type III

  • Jin, Xue-Feng;Yu, Hong-Shan;Wang, Dong-Ming;Liu, Ting-Qiang;Liu, Chun-Ying;An, Dong-Shan;Im, Wan-Taek;Kim, Song-Gun;Jin, Feng-Xie
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권3호
    • /
    • pp.343-351
    • /
    • 2012
  • In this paper, the kinetics of a cloned special glucosidase, named ginsenosidase type III hydrolyzing 3-O-glucoside of multi-protopanaxadiol (PPD)-type ginsenosides, were investigated. The gene (bgpA) encoding this enzyme was cloned from a Terrabacter ginsenosidimutans strain and then expressed in E. coli cells. Ginsenosidase type III was able to hydrolyze 3-O-glucoside of multi-PPD-type ginsenosides. For instance, it was able to hydrolyze the 3-O-${\beta}$-D-(1${\rightarrow}$2)-glucopyranosyl of Rb1 to gypenoside XVII, and then to further hydrolyze the 3-O-${\beta}$-D-glucopyranosyl of gypenoside XVII to gypenoside LXXV. Similarly, the enzyme could hydrolyze the glucopyranosyls linked to the 3-O-position of Rb2, Rc, Rd, Rb3, and Rg3. With a larger enzyme reaction $K_m$ value, there was a slower enzyme reaction speed; and the larger the enzyme reaction $V_{max}$ value, the faster the enzyme reaction speed was. The $K_m$ values from small to large were 3.85 mM for Rc, 4.08 mM for Rb1, 8.85 mM for Rb3, 9.09 mM for Rb2, 9.70 mM for Rg3(S), 11.4 mM for Rd and 12.9 mM for F2; and $V_{max}$ value from large to small was 23.2 mM/h for Rc, 16.6 mM/h for Rb1, 14.6 mM/h for Rb3, 14.3 mM/h for Rb2, 1.81mM/h for Rg3(S), 1.40 mM/h for Rd, and 0.41 mM/h for F2. According to the $V_{max}$ and $K_m$ values of the ginsenosidase type III, the hydrolysis speed of these substrates by the enzyme was Rc>Rb1>Rb3>Rb2>Rg3(S)>Rd>F2 in order.

Compound K의 인슐린분비 및 탄수화물 대사에 미치는 영향 (Effects of Compound K on Insulin Secretion and Carbohydrate Metabolism)

  • 최윤숙;한기철;한은정;박금주;성종환;정성현
    • Journal of Ginseng Research
    • /
    • 제31권2호
    • /
    • pp.79-85
    • /
    • 2007
  • 진세노사이드의 인슐린 분비 활성을 비교해 본 결과 PPD 계열 진세노사이드가 인슐린의 분비를 촉진하는 경향을 보였으며, 그 중에서도 CK의 인슐린 분비 촉진 효과가 가장 뛰어났다. CK는 RIN-m5F cell line과 일차 배양한 췌장 소도 세포에서 용량 의존적으로 인슐린의 분비를 촉진하였고 이러한 CK의 인슐린 분비 촉진 기전은 ATP-sensitive $K^+$ 채널의 봉쇄에 의한 것임을 확인하였다. H4IIE cell line에서 간 세포내 당신생과 관련된 효소의 발현을 측정한 결과 CK는 dexamethasone/cAMP에 의한 PEPCK 와 G6Pase의 발현을 억제하였다. 이로 미루어 볼 때, CK는 간에서 당의 신생을 억제하여 공복 시 혈당을 감소시킬 수 있음을 시사하였다. 또한 3T3-L1 cell line에서 TG의 함량과 $PPAR-{\gamma}$ 유전자의 발현에 미치는 영향을 살펴본 결과 CK는 $PPAR-{\gamma}$의 발현을 억제하여 결과 지방세포의 분화를 억제하였다. 결론적으로 CK는 췌장에서 ATP-sensitive $K^+$ channel을 봉쇄함으로 인슐린 분비를 촉진시키고 또한 간세포에서 당 신생을 억제함으로 식후 및 공복 시 혈당을 감소시킬 것으로 기대된다.