• Title/Summary/Keyword: Pozzolan

Search Result 108, Processing Time 0.026 seconds

An Experimental Study on the Pozzolan Reaction of discarded Bentonite by Heat Treatment Condition - Focused on discarded Bentonite by cooling using of Water - (소성조건에 따른 폐 벤토나이트의 포졸란 반응성에 관한 실험적 연구 - 주수냉각을 중심으로 -)

  • 장진봉;정민수;김효열;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.85-90
    • /
    • 2002
  • This study aims to propose a fundamental report for pozzolan reaction of discarded Bentonite by heat-treatment as concrete mineral admixture. As discarded bentonite is clay mineral to contain a great quantity a lot of $SiO_2$ and $Al_{2}O_{3}$, it is anticipated to reveal pozzolan reaction ability by heat-treatment. To find out pozzolan reaction ability of discarded Bentonite slurry by heat-treatment, the experiment is excuted Phenolphtalein test, setting test, pH test and the analysis by X-ray diffractor. As a result of this study, discarded Bentonite slurry can be utilized as concrete mineral admixture by heat-treatment and especially, pozzolan reaction ability of discarded Bentonite slurry is superior to the situation of 50$0^{\circ}C$~$700^{\circ}C$, 60min.

  • PDF

Physico-mechanical Properties and Formaldehyde/TVOC Emission of Particleboards with Volcanic Pozzolan

  • Kim, Sumin;An, Jae-Yoon;Kim, Jin-A;Kim, Hee-Soo;Kim, Hyun-Joong;Kim, Hak-Gyeom
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.39-50
    • /
    • 2007
  • The purpose of this study was to investigate the physico-mechanical properties and characteristics on reduction of formaldehyde and total volatile organic compound (TVOC) emission from particleboard (PB) with added volcanic pozzolan. Pozzolan was added as a scavenger at the level of 1, 3, 5, and 10 wt.% of urea formaldehyde (UF) resin for PB manufacture. The moisture content, density, thickness swelling, water absorption and physical properties of PBs were examined. Three-point bending strength and internal bond strength were determined using a universal testing machine. Formaldehyde and TVOC were determined by desiccator and 20L small chamber methods. With increasing pozzolan content the physical and mechanical properties of the PBs were not significantly changed, but formaldehyde and TVOC emissions were decreased. Because pozzolan has a rough and irregular surface with porous form, it can be used as a scavenger for PBs at a content up to 10 wt.% without any detrimental effect on the physical and mechanical properties.

A Study on the Effect of Concrete Strength by Pozzolan and High-early Strength Cement (조강 및 포조란시멘트 의결경화촉진이 콘크리트 강도에 미치는 영향에 관한 연구)

  • 전현우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.3
    • /
    • pp.2677-2684
    • /
    • 1972
  • This study was carried out to search for an effect on strengths of a pozzolan and a high-early strength cements due to accelerating the initial setting and a rate of strength development at early age, and to obtain the effects applicable for structural construction works safety in the cold winter weather. The results of the study were as follows: 1. The early strength of high-early strength cement was higher than an ordinary portland cement(Type I). 2. High-early strength cement had a characteristic suitable for construction works in the cold weather due to the rate of acceleration of the eary strength. 3. When using pozzolan cements, a weight proportion should be considered in mix design since the pozzolan cement has a lower specific gravity than other portland cements. 4. It was desirable for the pozzolan cement to shorten the storage period since particles of the pozzolan cement was so fine that it was likely to weathering.

  • PDF

In vitro antibacterial activities of Pozzolan as a dietary silicate minerals supplementation to animals (가축에 대한 보조사료 규산염제로서 포졸란의 in vitro 항균 효과)

  • Kim, Chang-Hyun;Um, Kyung-Hwan;Park, Byung-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.778-785
    • /
    • 2020
  • The purpose of this study was to investigate in vitro antibacterial activities of pozzolan against super bacteria and intestinal bacteria. There were four treatment groups: 1) CON, pozzolan free control group; 2) DP0.3, microbial culture medium prepared by mixing distilled water and 0.3% of pozzolan powder; 3) DP0.5, microbial culture medium prepared by mixing distilled water and 0.5% of pozzolan powder; and 4) PE, microbial culture medium prepared with pozzolan powder extracts without adding distilled water. The count of Lacctobacillus casei was significantly higher in the DP0.3 group compared to CON (P<0.05). However, it showed no significant difference compared to other treatment groups. Numbers of Clostridium butyricum, Escherichia coli, and Salmonella typhimurium were significantly lower in pozzolanic treatment groups compared to CON (P<0.05). Clostridium butyricum and Salmonella typhimurium counts were significantly different among DP0.3, DP0.5, and PE groups (P<0.05). Counts of E. coli were also significantly between DP0.5 and PE groups (P<0.05). Counts of MRSA and VRE were significantly lower in pozzolanic treatment groups compared to CON (P<0.05). MRSA counts were significantly different among DP0.5, DP0.3 and PE groups. VRE counts were significantly higher in the order of PE > DP0.3> DP0.5> CON (P<0.05). These results suggest that pozzolan could be used as a dietary silicate supplement and a natural antibacterial agent for livestock if its antimicrobial activity against super bacteria and harmful bacteria in the intestine is confirmed.

The Study on the Compressive Strength Properties of Mortar using Discarded Bentonite Powder by the Cooling Method after Heat Treatment (폐벤토나이트 분말의 소성 및 냉각조건에 따른 모르터의 압축강도 발현특성에 관한 연구)

  • Kim, Hyo-Youl
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.87-94
    • /
    • 2004
  • As the bentonite is main material to prevent from collapse of drilling hole at underground excavation works, it is increased using quantity on construction industry day by day. But, the discarded bentonite that is over using at underground excavation works is caused various enviromental trouble as soil and water pollution est. Therefore, this study aims to propose a foundamental report for pozzolan reaction of discarded Bentonite powder by heat-treatment and cooling as concrete mineral admixture. To find out pozzolan reaction ability of discarded Bentonite powder by indirect cooling & cooling using of water after heat-treatment, the experiments are excuted flow test & compressive strength on age of mortar using discarded Bentonite powder. As a result of this study, discarded Bentonite powder can be utilized as concrete mineral admixture by heat-treatment and especially, pozzolan reaction ability of discarded Bentonite powder is superior to the situation of 600℃. 60min &amp; cooling using of water.

An Experimental Study on the Pozzolan Reaction of discarded Bentonite by the Cooling Method after Heat Treatment (소성가공한 폐 벤토나이트 분말의 냉각방법에 따른 포졸란 반응성에 관한 실험적 연구)

  • Kim, Hyo-Yeul;Kang, Byeung-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.3
    • /
    • pp.139-146
    • /
    • 2002
  • As the bentonite is main material to prevent from collapse of drilling hole at underground excavation works, it is increased using quantity on construction industry day by day. But, the discarded bentonite that is over using at underground excavation works is caused various environmental trouble as soil and water pollution est. This study aims to propose a foundamental report for pozzolan reaction of discarded Bentonite powder by heat-treatment and cooling as concrete mineral admixture. To find out pozzolan reaction ability of discarded Bentonite powder by indirect cooling & cooling using of water after heat-treatment, the experiments are excuted Phenolphtalein test, setting test, pH test and the analysis by X-ray diffractor. As a result of this study, discarded Bentonite powder can be utilized as concrete mineral admixture by heat-treatment and especially, pozzolan reaction ability of discarded Bentonite powder is superior to the situation of 50$0^{\circ}C$~$700^{\circ}C$, 60min.

A Study on the Properties of Concrete Mixed with Pozzolan Inorganic Polymer(PIP) Waterproof Admixture (인공 무기계 구체방수재를 혼입한 콘크리트의 물성에 관한 연구)

  • Chung, Jee-Seung;Shin, Hwa-Cheol;Kim, Jin-Gu
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.82-89
    • /
    • 2016
  • In this paper, various of experiments were performed for checking the usefulness of Pozzolan Inorganic Polymer(PIP) Waterproof Admixture. The results of the experiment enabled to set the optimum mixture ratio of PIP waterproof admixture as 3.5%. Then, the test specimen mixed with PIP waterproof admixture was produced and consider whether meeting the quality standard of waterproofing admixture for concrete (KS F 4926) From the results, all the items such as mechanical properties and durability were meet the quality standard of KS. The PIP waterproof admixture concrete shows the high resistance of absorption, permeability and chloride ion penetration thanks to its internal components such as siliceous powder, zinc stearate and dispersive polymer.

A Study on the Mobility Properties of Cement Paste by Fine Fowers of Pozzolan Chemical Adixtures (포졸란계 미분말 및 화학혼화제에 의한 시멘트페이스트의 유동특성에 관한 연구)

  • 김도수;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.25-29
    • /
    • 1995
  • To perform high-strength of concrete, fine powers of pozzolan such as fly ash, silica fume mixed with cement. But mobility of cement and concrete decreased due to using of these powers. To control decrease of this mobility, it is required that mobility is improved by using of chemical admixture such as superplasticizer. We used admixtures -NSF, NM-2, NT-2 etc- in order to improve mobility of cement paste being substituted by 10, 20% of pozzolans respectively. It proved that optimum dosage of NSF, NT-2 was 2.0% for being substituted 10%, 3.0% for 20% so as to increase mobility of cement paste mixed paste mixed with fine powers of pozzolan at W/C=0.40.

  • PDF

Study on the Pozzolan Reaction Degree of Palm Oil Fuel Ash as a Mineral Admixture for Sustainable Concrete (POFA를 혼입한 시멘트의 포졸란 반응에 관한 연구)

  • Lee, Hyung-Min;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.335-336
    • /
    • 2010
  • This paper presents experimentally investigated the effects of pozzolan made from various by-Product materials on mechanical properties of mortar. Fly ash(FA), slag (BFS), and palm oil fuel ash (POFA) were partially used to replace Portland cement. The results suggest that mortars containing FA, BFS, and POFA can be used as pozzolanic materials in making concrete with 28day compressive strength. After curing, the mortar containing 10-30% FA or POFA, and 30% BFS exhibited compressive strengths that of the original Portland cement (OPC). The use of FA, POFA, and BFS to partially replace Portland cement has evaluation method of the Assessed Pozzolan-activity index.(API)

  • PDF

Effects of Blending Materials on the High Strength of Hardened Cement Paste (시멘트 경화체의 강도특성에 미치는 혼합재료의 영향)

  • 추용식;김정환
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1536-1544
    • /
    • 1994
  • DSP technique was applied to improve the high strength characteristics of hardened cement paste using pozzolan materials as blending materials, and pozzolan reactivity was investigated. Pozzolanic materials such as diatomaceous earth, fly ash and hydrated silica were used as blending material. And also superplasticizer was added to cement for molding the specimens. After curing for 60 days, the specimens substituted with 10 and 15 wt% of diatomaceous earth showed better strength characteristics than the specimen with fly ash. The specimen substituted 7 wt.% of hydrated silica exhibited excellent strength with above 800 kg/$\textrm{cm}^2$.

  • PDF