• Title/Summary/Keyword: Power-law Topology

Search Result 19, Processing Time 0.025 seconds

Analysis of Korea Internet AS-Level Topology (한국 인터넷 AS 레벨 위상 분석)

  • Oh, Dong Ik;Lee, Kang Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.10
    • /
    • pp.901-911
    • /
    • 2012
  • Over the last decade, the Internet in Korea has developed rapidly. The number of ASes in Korea is 755. However, there has been no significant effort to obtain an accurate picture of the Internet AS-level topology. To construct more complete set of Korea AS-level topology data all the available data sources are critically reviewed and compared. Three data sources, which can be used to infer Korea Internet AS-level topology, are selected; BGP data of UCLA "Internet Topology Collection", IRR data and IXP data. It is known that global Internet AS-level topology follows power-law distribution. In this paper, we also investigate if the Korea Internet AS-level topology follows power-law distribution.

Power-Laws Exponents of the Domestic AS-level Internet Topology based on the Valley-free BGP Routing Policy (BGP 밸리-프리 라우팅 정책에 기반한 국내 AS 레벨 인터넷 토폴로지의 파워-로 지수)

  • Kang, Koo-Hong
    • Journal of Internet Computing and Services
    • /
    • v.11 no.4
    • /
    • pp.41-49
    • /
    • 2010
  • Faloustsos et al.[1,2] showed successfully that the power-laws describe the heavy-tailed distributions of the AS level Internet topology properties such as node degree. This result allows us to represent the characteristics of AS-level Internet topology using some power-law exponents with elegant and simple. In this paper, we obtained the power-law exponents of the domestic AS-level Internet topology properties - the node degree, the number of pairs within hops, and eigenvalues of the graph - based on the valley-free BGP routing policy. We used the real data sets from UCLA IRL laboratory, and showed that these power-laws fit the real data pretty well resulting in correlation coefficient of 90.7%, 96.5%, and 97%, respectively. In particular, rounding the effective diameter to three, approximately 91% of the pairs of nodes are within this distance; that is, we might conclude our topology is pretty well organized.

Prediction of the Future Topology of Internet Reflecting Non-monotony (비단조 변화성을 이용한 인터넷의 미래 위상 예측)

  • 조인숙;이문호
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.2
    • /
    • pp.205-214
    • /
    • 2004
  • Internet evolves into the huge network with new nodes inserted or deleted depending on specific situations. A new model of network topology is needed in order to analyze time-varying Internet more realistically and effectively. In this study the non-monotony models are proposed which can describe topological changes of Internet such as node insertion and deletion, and can be used for predicting its future topology. Simulation is performed to analyze the topology generated by our model. Simulation results show that our proposed model conform the power law of realistic Internet better than conventional ones. The non-monotony model can be utilized for designing Internet protocols and networks with better security.

  • PDF

Topology Characteristics and Generation Models of Scale-Free Networks

  • Lee, Kang Won;Lee, Ji Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.205-213
    • /
    • 2021
  • The properties of a scale-free network are little known; its node degree following a power-law distribution is among its few known properties. By selecting real-field scale-free networks from a network dataset and comparing them to other networks, such as random and non-scale-free networks, the topology characteristics of scale-free networks are identified. The assortative coefficient is identified as a key metric of a scale-free network. It is also identified that most scale-free networks have negative assortative coefficients. Traditional generation models of scale-free networks are evaluated based on the identified topology characteristics. Most representative models, such as BA and Holme&Kim, are not effective in generating real-field scale-free networks. A link-rewiring method is suggested that can control the assortative coefficient while preserving the node degree sequence. Our analysis reveals that it is possible to effectively reproduce the assortative coefficients of real-field scale-free networks through link-rewiring.

Network Topology Generation Algorithms Reflecting Internet Evolution (인터넷의 변화성을 고려한 네트워크 위상 생성 알고리즘)

  • 조인숙;김병기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10B
    • /
    • pp.938-946
    • /
    • 2003
  • Studies of Internet algorithms or policies require experiments on the real large-scale networks. But practical problems with large real networks make them difficult. Instead many researchers use simulations on the Internet topology models. Some tried to find out abstract topological properties of Internet. And several models are proposed to reflect Internet's topological characteristics better. But few studies have been performed on how to model the evolution of Internet. We propose algorithms for modeling addition and removal of nodes and accompanied change of topologies. We analyze the topologies generated by our algorithms to observe that they obey the power-laws better than those generated by existing ones. These algorithms are also expected to be helpful in predicting future topologies of Internet.

Recrystallization Topology : a Scale-free Power-law Network (재결정 위상 : 척도 없는 거듭제곱 법칙 망)

  • Park, Jae-Hyun
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.3
    • /
    • pp.167-174
    • /
    • 2010
  • Recently the distributed topology control algorithm for constructing the Recrystallization Topology in the unstructured peer-to-peer network was proposed. In this paper, we prove that such a hierarchical topology is a scale-free power-law network. We present a model of a construction process of the distributed protocol, and analyze it based on a mean-field approximation and the continuum theory, so that we show that the constructed Recrystallization Topology is a scale-free network. In the proposed model, all nodes are born with some initial attractiveness and the system incorporates the rewiring of some links at every time step. Some old links are removed with the anti-preferential probability, and some new links are added with preferential probability. In other words, according to the distributed algorithm, each node makes connections to the more-preferential nodes having higher hit-ratio than other nodes, while it disconnects the anti-preferential nodes having lesser hit-ratio. This gives a realistic description of the local processes forming the recrystallization topology in unstructured peer-to-peer network. We calculate analytically the degree distribution. The analytic result indicates that the constructed network is a scale-free network, of which the scaling exponent is 3.

A Literature Survey of the Internet Topology Generation Models (인터넷 토폴로지 생성 모델에 관한 문헌조사 연구)

  • Lee, Kang Won;Kook, Kwang Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.1
    • /
    • pp.138-152
    • /
    • 2007
  • There has been much effort to improve the accuracy of the Internet topology model and include its quantitativeand/or qualitative effects on studies of a variety of network problems. Such improvement is the primarymotivation of this paper in listing and classifying the body of literature addressing the Internet topology. Themetrics, which characterize the fundamental properties of the Internet, are also divided into five categories andtheir importance and applications are discussed. Finally, we suggest several future research topics for theInternet topology models to be more realistic and applicable.

A Comparative Study of The Internet Topology Generators for Domestic AS-Level Topology (국내 AS 수준 인터넷 위상 분석과 인터넷 위상 생성기 비교에 관한 연구)

  • Oh, Dong-Ik;Lee, Kang-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2365-2373
    • /
    • 2012
  • To obtain Korea AS-level internet topology, we used three data sources, which include BGP data of UCLA IRL, IRR and IXP data. Using Internet topology generator models(Waxman, BA and GLP), we developed three graphs that have same number of nodes as Korea AS-level Internet. Then we compared each graph with the Korea AS-level Internet topology. Through this study we could find that the existing Internet topology generators can't simulate Korea AS-level internet.

An Internet Topology Generator Applying DEVS Modeling (DEVS 모델링을 적용한 인터넷 위상 생성기)

  • Sohn Juhang;Park Sangjoon;Han Jungahn;Kim Hyungjong;;Kim Byunggi
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.3
    • /
    • pp.43-54
    • /
    • 2004
  • Studies of Internet algorithms or policies require experiments on the real large-scale networks. But practical problems with large real networks make them difficult. Instead many researchers use simulations on the Internet topology models. So, It is Important that study about topology model that reflect characteristic of the internet exactly. We propose new topology model which reflect of hierarchical network and addition, removal of nodes and accompanied change of topologies. In the modeling scheme for network generation, we applied DEVS formalism and analyzed the topologies generated by our algorithms.

  • PDF

Power-law Distributional Perturbation Analysis of the Topology of Reconstructed Genetic Networks (재구성된 유전자 네트워크의 섭동적(Perturbational) 토폴로지 변형 분석)

  • 이상근;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.754-756
    • /
    • 2003
  • DNA칩 기술로 얻어지는 대규모 섭동데이터(perturbation data)는 생물학적시스템(biological system)의 유전자네트워크(genetic network)를 재구성(reverse-engineering)하는데 있어 유용하다. 그러나 기존의 연구는 유전자 조절 관계의 규명이나 혹은 데이터를 설명하는 최적의 모델을 찾는 방향에만 관심을 두고 있고. 실험적인 한계로 인한 DNA칩 데이터의 오류가 재구성된 네트워크의 구조에 미치는 영향에 대해서는 중요하게 다루고 있지 않다. 본 논문에서는 유전자 네트워크의 멱함수(power-low) 분포 구조를 이용하여, 섭동 데이터의 오류가 재구성된 네트워크의 토폴로지(topology)에 미치는 영향을 분석하였다. 가상의 네트워크에 대한 데이터를 사용하여 실험한 결과, 데이터의 오류 정도에 따른 네트워크 토폴로지의 변형 양상을 관측할 수 있었다.

  • PDF