• Title/Summary/Keyword: Power-Law Model

Search Result 641, Processing Time 0.022 seconds

A semi-analytical study on the nonlinear pull-in instability of FGM nanoactuators

  • Attia, Mohamed A.;Abo-Bakr, Rasha M.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.451-463
    • /
    • 2020
  • In this paper, a new semi-analytical solution for estimating the pull-in parameters of electrically actuated functionally graded (FG) nanobeams is proposed. All the bulk and surface material properties of the FG nanoactuator vary continuously in thickness direction according to power law distribution. Here, the modified couple stress theory (MCST) and Gurtin-Murdoch surface elasticity theory (SET) are jointly employed to capture the size effects of the nanoscale beam in the context of Euler-Bernoulli beam theory. According to the MCST and SET and accounting for the mid-plane stretching, axial residual stress, electrostatic actuation, fringing field, and dispersion (Casimir or/and van der Waals) forces, the nonlinear nonclassical equation of motion and boundary conditions are obtained derived using Hamilton principle. The proposed semi-analytical solution is derived by employing Galerkin method in conjunction with the Particle Swarm Optimization (PSO) method. The proposed solution approach is validated with the available literature. The freestanding behavior of nanoactuators is also investigated. A parametric study is conducted to illustrate the effects of different material and geometrical parameters on the pull-in response of cantilever and doubly-clamped FG nanoactuators. This model and proposed solution are helpful especially in mechanical design of micro/nanoactuators made of FGMs.

A Study on Fatigue Analysis of Non-Gaussian Wide Band Process using Frequency-domain Method (주파수 영역 해석 기법을 이용한 비정규 광대역 과정의 피로해석에 관한 연구)

  • Kim, Hyeon-Jin;Jang, Beom-Seon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.6
    • /
    • pp.466-473
    • /
    • 2018
  • Most frequency domain-based approaches assume that structural response should be a Gaussian random process. But a lot of non-Gaussian processes caused by multi-excitation and non-linearity in structural responses or load itself are observed in many real engineering problems. In this study, the effect of non-Normality on fatigue damages are discussed through case study. The accuracy of four frequency domain methods for non-Gaussian processes are compared in the case study. Power-law and Hermite models which are derived for non-Gaussian narrow-banded process tend to estimate fatigue damages less accurate than time domain results in small kurtosis and in case of large kurtosis they give conservative results. Weibull model seems to give conservative results in all environmental conditions considered. Among the four methods, Benascuitti-Tovo model for non-Gaussian process gives the best results in case study. This study could serve as background material for understanding the effect of non-normality on fatigue damages.

Vibration analysis of sandwich truncated conical shells with porous FG face sheets in various thermal surroundings

  • Rahmani, Mohsen;Mohammadi, Younes;Kakavand, Farshad
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.239-252
    • /
    • 2019
  • Since conical sandwich shells are important structures in the modern industries, in this paper, for the first time, vibration behavior of the truncated conical sandwich shells which include temperature dependent porous FG face sheets and temperature dependent homogeneous core in various thermal conditions are investigated. A high order theory of sandwich shells which modified by considering the flexibility of the core and nonlinear von Karman strains are utilized. Power law rule which modified by considering the two types of porosity volume fractions are applied to model the functionally graded materials. By utilizing the Hamilton's energy principle, and considering the in-plane and thermal stresses in the face-sheets and the core, the governing equations are obtained. A Galerkin procedure is used to solve the equations in a simply supported boundary condition. Uniform, linear and nonlinear temperature distributions are used to model the effect of the temperature changing in the sandwich shell. To verify the results of this study, they are compared with FEM results obtained by Abaqus software and for special cases with the results in literatures. Eigen frequencies variations are surveyed versus the temperature changing, geometrical effects, porosity, and some others in the numerical examples.

An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models

  • Hadji, Lazreg;Zouatnia, Nafissa;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.231-241
    • /
    • 2019
  • In this paper, a new higher order shear deformation model is developed for static and free vibration analysis of functionally graded beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. Different patterns of porosity distributions (including even and uneven distribution patterns, and the logarithmic-uneven pattern) are considered. In addition, the effect of different micromechanical models on the bending and free vibration response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present higher-order shear deformation model, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain displacement, stresses and frequencies, and the numerical results are compared with those available in the literature. A comprehensive parametric study is carried out to assess the effects of volume fraction index, porosity fraction index, micromechanical models, mode numbers, and geometry on the bending and natural frequencies of imperfect FG beams.

Thickness stretching and nonlinear hygro-thermo-mechanical loading effects on bending behavior of FG beams

  • Faicel, Khadraoui;Abderahmane, Menasria;Belgacem, Mamen;Abdelhakim, Bouhadra;Fouad, Bourada;Soumia, Benguediab;Kouider Halim, Benrahou;Mohamed, Benguediab;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.783-798
    • /
    • 2022
  • This study attempts to investigate the impact of thickness stretching and nonlinear hygro-thermo-mechanical loading on the bending behavior of FG beams. Young's modulus, thermal expansion, and moisture concentration coefficients vary gradually and continuously according to a power-law distribution in terms of the volume fractions of the constituent materials. In addition, the interaction between the thermal, mechanical, and moisture loads is involved in the governing equilibrium equations. Using the present developed analytical model and Navier's solution technique, the numerical results of non-dimensional stresses and displacements are compared with those obtained by other 3D theories. Furthermore, the present analytical model is appropriate for investigating the static bending of FG beams exposed to intense hygro-thermo-mechanical loading used for special technical applications in aerospace, automobile, and civil engineering constructions.

Neutral surface-based static and free vibration analysis of functionally graded porous plates

  • J.R. Cho
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.431-440
    • /
    • 2023
  • The functionally graded (FG) porous plates are usually characterized by the non-symmetric elastic modulus distribution through the thickness so that the plate neutral surface does not coincide with the mid-surface. Nevertheless, the conventional analysis models were mostly based on the plate mid-surface so that the accuracy of resulting numerical results is questionable. In this context, this paper presents the neutral surface-based static and free vibration analysis of FG porous plates and investigates the differences between the mid- and neutral surface-based analysis models. The neutral surface-based numerical method is formulated using the (3,3,2) hierarchical model and approximated by the last introduced natural element method (NEM). The volume fractions of metal and ceramic are expressed by the power-law function and the cosine-type porosity distributions are considered. The proposed numerical method is demonstrated through the benchmark experiment, and the differences between two analysis models are parametrically investigated with respect to the thickness-wise material and porosity distributions. It is found from the numerical results that the difference cannot be negligible when the material and porosity distributions are remarkably biased in the thickness direction.

On vibrations of functionally graded carbon nanotube (FGCNT) nanoplates under moving load

  • Alaa A. Abdelrahman;Ismail Esen;Mohammed Y. Tharwan;Amr Assie;Mohamed A Eltaher
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.395-412
    • /
    • 2024
  • This article develops a nonclassical size dependent nanoplate model to study the dynamic response of functionally graded carbon nanotube (FGCNT) nanoplates under a moving load. Both nonlocal and microstructure effects are incorporated through the nonlocal strain gradient elasticity theory. To investigate the effect of reinforcement orientation of CNT, four different configurations are studied and analysed. The FGM gradation thorough the thickness direction is simulated using the power law. In the context of the first order shear deformation theory, the dynamic equations of motion and the associated boundary conditions are derived by Hamilton's principle. An analytical solution of the dynamic equations of motion is derived based on the Navier methodology. The proposed model is verified and compared with the available results in the literature and good agreement is found. The numerical results show that the dynamic performance of FGCNT nanoplates could be governed by the reinforcement pattern and volume fraction in addition to the non-classical parameters and the moving load dimensionless parameter. Obtained results are reassuring in design and analysis of nanoplates reinforced with CNTs.

Analytical nonlocal elasticity solution and ANN approximate for free vibration response of layered carbon nanotube reinforced composite beams

  • Emrah Madenci;Saban Gulcu;Kada Draiche
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.251-263
    • /
    • 2024
  • This article investigates the free vibration behavior of carbon nanotube reinforced composite (CNTRC) beams embedded using variational analytical methods and artificial neural networks (ANN). The material properties of layered functionally graded CNTRC (FG-CNTRC) beams are estimated using nonlocal parameters modified power-law with different types of CNT distributions through the thickness direction of the beam. Adopting Eringen's nonlocal elasticity theory to capture the small size effects, the nonlocal governing equations are derived and solved using the analytical method. And also, the problem was analyzed using the ANN method. The architecture of the proposed ANN model is 3-9-1. In the experiments, we used 112 different data to predict the natural frequency using ANN. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion as well as the boundary conditions of the beam are derived using Hamilton's principle. The classical beam theory is used to formulate a governing equation for predicting the free vibration of laminated CNTRC beams. According to the experimental results, the prediction ability of the ANN model is very good and the natural frequency can be predicted in ANN without attempting any experiments.

A comprehensive computational approach to assess the influence of the material composition on vibration, bending and buckling response of FG beam lying on viscoelastic foundation

  • Brahim Laoud;Samir Benyoucef;Attia Bachiri;Rabbab Bachir Bouiadjra;Abdelouahed Tounsi;Mahmoud M Selim;Hosam A. Saad
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.45-56
    • /
    • 2024
  • This paper proposes an analytical solution for the free vibration, bending and buckling a functionally graded (FG) beam resting on viscoelastic foundation. The materials characteristics of the FG beam are considered to be varying across the thickness according several power law functions. The governing equations are found analytically using a quasi-3D model that contains undetermined integral forms and involves few unknowns to derive. Navier's method for simply supported beam is employed to solve the problem. Numerical examples are presented and studied to demonstrate the accuracy and effectiveness of the proposed model. Then, a detailed parametric study is presented in the form of tables and graphs to study and analyze the effects of the different parameters on the response of FG beams with different material compositions resting on a viscoelastic foundation.

Recidivism prediction of sex offender risk assessment tools: STATIC-99 and HAGSOR-Dynamic (교정시설내 성범죄자 재범위험성 평가도구의 재범 예측: STATIC-99와 HAGSOR-동적요인을 중심으로)

  • Yoon, Jeongsook
    • Korean Journal of Forensic Psychology
    • /
    • v.13 no.2
    • /
    • pp.99-119
    • /
    • 2022
  • Research on sex offense has shown that sex offenders are very heterogeneous. Sex offenders are heterogeneous in their probability of risk of recidivism. Some sex offenders are known to be much higher in their tendencies to reactivate than others. The study examined the predictive and explanatory power of static and dynamic risk factors in STATIC-99 and HAGSOR-Dynamic which have been used in Korean correctional facilities since 2014. STATIC-99 and HAGSOR-Dynamic showed moderate predictive accuracy for all crimes(AUC = .737, AUC = .597, respectively, ps < .001). However, when examining sex crime alone, only STATIC-99 predicted recidivism significantly(AUC = .743, p < .001). The incremental predictive power of HAGSOR-Dynamic was confirmed; the explanatory power of Model 2 comprising both static and dynamic risk factors were significant beyond Model 1 comprising only static factors(∆χ2= 12.721, p < .001), but this tendency was only applied to the model of all crimes. These findings were discussed with implications of practicing the sex offender assessment and treatment.