본 연구는 경제적으로 국내에 큰 영향을 주었던 글로벌 금융위기를 기반으로 총 10년의 연간 기업데이터를 이용한다. 먼저 시대 변화 흐름에 일관성있는 부도 모형을 구축하는 것을 목표로 금융위기 이전(2000~2006년)의 데이터를 학습한다. 이후 매개 변수 튜닝을 통해 금융위기 기간이 포함(2007~2008년)된 유효성 검증 데이터가 학습데이터의 결과와 비슷한 양상을 보이고, 우수한 예측력을 가지도록 조정한다. 이후 학습 및 유효성 검증 데이터를 통합(2000~2008년)하여 유효성 검증 때와 같은 매개변수를 적용하여 모형을 재구축하고, 결과적으로 최종 학습된 모형을 기반으로 시험 데이터(2009년) 결과를 바탕으로 딥러닝 시계열 알고리즘 기반의 기업부도예측 모형이 유용함을 검증한다. 부도에 대한 정의는 Lee(2015) 연구와 동일하게 기업의 상장폐지 사유들 중 실적이 부진했던 경우를 부도로 선정한다. 독립변수의 경우, 기존 선행연구에서 이용되었던 재무비율 변수를 비롯한 기타 재무정보를 포함한다. 이후 최적의 변수군을 선별하는 방식으로 다변량 판별분석, 로짓 모형, 그리고 Lasso 회귀분석 모형을 이용한다. 기업부도예측 모형 방법론으로는 Altman(1968)이 제시했던 다중판별분석 모형, Ohlson(1980)이 제시한 로짓모형, 그리고 비시계열 기계학습 기반 부도예측모형과 딥러닝 시계열 알고리즘을 이용한다. 기업 데이터의 경우, '비선형적인 변수들', 변수들의 '다중 공선성 문제', 그리고 '데이터 수 부족'이란 한계점이 존재한다. 이에 로짓 모형은 '비선형성'을, Lasso 회귀분석 모형은 '다중 공선성 문제'를 해결하고, 가변적인 데이터 생성 방식을 이용하는 딥러닝 시계열 알고리즘을 접목함으로서 데이터 수가 부족한 점을 보완하여 연구를 진행한다. 현 정부를 비롯한 해외 정부에서는 4차 산업혁명을 통해 국가 및 사회의 시스템, 일상생활 전반을 아우르기 위해 힘쓰고 있다. 즉, 현재는 다양한 산업에 이르러 빅데이터를 이용한 딥러닝 연구가 활발히 진행되고 있지만, 금융 산업을 위한 연구분야는 아직도 미비하다. 따라서 이 연구는 기업 부도에 관하여 딥러닝 시계열 알고리즘 분석을 진행한 초기 논문으로서, 금융 데이터와 딥러닝 시계열 알고리즘을 접목한 연구를 시작하는 비 전공자에게 비교분석 자료로 쓰이기를 바란다.
본 연구는 우리나라 공공기관이 운영하는 대도시의 도시철도 노선에 대하여 비용 비효율성의 정도를 도출하고, 이러한 비효율성의 발생 원인을 파악하고자 하였다. 이를 위하여 도시철도 노선을 노동, 동력, 유지보수의 세 가지 생산요소를 투입하여 열차-km의 산출물을 생산하는 형태로 상정하고, 확률적 비용변경 접근법을 이용한 초월대수 함수형태의 가변비용함수모형을 설정하였다. 확률적 비용변경 접근법을 적용한 도시철도 노선의 운영비용 비효율성 분석 결과, 노선 전체의 6년간 절감가능 비용은 약 6,672억원으로 추정되었으며, 비효율성이 높은 상위 5개 노선은 부산1호선, 대구1호선, 대전1호선, 광주1호선, 대구2호선으로 파악되었다. 비효율의 발생원인은 노동과 유지보수 요소에 기인하며, 본 연구의 결과를 활용하면, 도시철도 운영에 있어서의 인력 및 유지보수 비용 절감을 위한 대책의 우선순위와 구체적인 방안 모색에 있어 참고가 가능할 것이라 사료된다.
직류 전철변전소의 가선전압은 전동차들의 회생제동 및 역행가속패턴에 따라 급격히 상승 또는 하강하는 특성을 갖는다. 가선전압 순시 변동폭을 최소로 유지함으로써, 전철변전소와 전동차들의 에너지 효율을 개선시키기 위한 다양한 연구들이 이루어지고 있다. 본 논문은 직류전철 변전소의 가선전압의 급격한 변동특성을 모델링하고 선형인공 신경망 알고리즘을 이용한 가선전압 회로모델의 파라메터 추정 방법을 제안하며, 최소자승법을 이용한 추정방법과의 비교를 통해 이 방법의 타당성을 입증한다. 가선전압 및 피더전류들의 누적 측정값을 사용하여 일괄처리 최소자승법으로 RC 병렬회로의 파라메터들을 추정한 결과를 제시하며, 실시간 가선전압 및 피더전류 측정값을 이용하여 오차역 전파방식으로 학습되는 선형인공신경망 기법 추정 결과를 분석한다.
Twenty-first century coming of health care in our country is in a situation of much conflict because the relationship between nurses and doctors is seen in terms of a traditional and vertical structure. Accordingly. it is very difficult to find collaboration amongst individuals of these two professions. Now nursing is trying to find independence and autonomy by carrying out independent professional skills. This study on collaboration and the obstacles hindering its pursuit. The strategies of collaboration to give better health care quality are as follows; First, a program for professionals should be developed to enhance professional knowledge and technology and train nursing professionals so that nursing can be acknowledged as a profession with a power to carry out on independent job. Second, collaboration reduces expenses and results in satisfactory performances of duty, high productivity, low incidence of medical accident, and higher satisfaction of the patient. Therefore the leader in the higher position should take positive stance for collaboration and help create a cooperative situation through the development of practical orders for collaboration. opening cooperative wards, and meeting for collaboration. Third, a collaboration model should be introduced into the courses of the nursing and medical school curriculum, which would influence job atmosphere after graduation. Fourth, nurses should have pride in their jobs as professionals and have confidence in their professional skill, knowledge and ability. Nurses should make an effort to share responsibility and have independence and autonomy. Fifth, common people as well as doctors know little about professional practice and the role of nurses, so a publicity campaign is also required.
본 논문은 추가 비용 없이 전기자동차(EV) 주행 범위를 확장하기 위해 에너지 효율적인 전기자동차 주행 프로파일을 도출하는 새로운 시스템 수준의 프레임 워크를 소개한다. 이 논문은 먼저 운전 차량에 작용하는 힘과 모터 효율을 고려한 전기차 파워 트레인 모델을 구현한 후, 경로에 의해 정의된 주행 임무에 대한 최소 에너지 주행 프로파일을 도출한다. 이를 위해서 본 프레임워크는 먼저 최적화 문제를 공식화하고, 가중치 계수를 이용한 동적 프로그래밍 알고리즘을 사용하여 에너지 소비와 운전 시간을 모두 최소화하는 주행 프로파일을 도출한다. 본 논문은 주행 시간 제약을 만족시키기 위한 다양한 가중치 계수 도출 방법을 소개한다. 시뮬레이션 결과, 제안 된 스케일링 알고리즘의 연산시간이 이진 검색 알고리즘 및 탐욕 알고리즘보다 각각 34 % 및 50 % 더 작음을 보여준다.
Kim, Wonsu;Jang, Dongmin;Park, Sung Won;Yang, MyungSeok
Journal of Information Science Theory and Practice
/
제10권spc호
/
pp.135-142
/
2022
Recently, with the development of data processing technology and the increase of computational power, methods to solving social problems using Artificial Intelligence (AI) are in the spotlight, and AI technologies are replacing and supplementing existing traditional methods in various fields. Meanwhile in Korea, heavy rain is one of the representative factors of natural disasters that cause enormous economic damage and casualties every year. Accurate prediction of heavy rainfall over the Korean peninsula is very difficult due to its geographical features, located between the Eurasian continent and the Pacific Ocean at mid-latitude, and the influence of the summer monsoon. In order to deal with such problems, the Korea Meteorological Administration operates various state-of-the-art observation equipment and a newly developed global atmospheric model system. Nevertheless, for precipitation nowcasting, the use of a separate system based on the extrapolation method is required due to the intrinsic characteristics associated with the operation of numerical weather prediction models. The predictability of existing precipitation nowcasting is reliable in the early stage of forecasting but decreases sharply as forecast lead time increases. At this point, AI technologies to deal with spatio-temporal features of data are expected to greatly contribute to overcoming the limitations of existing precipitation nowcasting systems. Thus, in this project the dataset required to develop, train, and verify deep learning-based precipitation nowcasting models has been constructed in a regularized form. The dataset not only provides various variables obtained from multiple sources, but also coincides with each other in spatio-temporal specifications.
이 논문 ""경제문감 별집"에 나타난 주례 이념"을 고찰한 글이다. 주지하다시피 삼봉(三峯) 정도전(鄭道傳)은 후세의 평가가 어떻든간에 조선의 건국이념을 제시하고 관료 체제의 정비에 이르기까지 그의 손을 거치지 않은 것이 없을 정도로 조선 왕조 500년의 기틀을 다진 인물이다. 정도전은 "주례"를 사회개혁의 이념 모델로 삼아 태조 3년(1394)에 "조선경국전"을 찬진(撰進)하였다. "조선경국전"은 정도전이 신왕조의 문물제도를 정하는 일환으로 저술한 새로운 법전(法典)의 지침서(指針書)로서, 신왕조의 지배 사상인 유교이념에 바탕을 두고 있다. 이에 비해 "경제문감"은 "조선경국전" 치전(治典)의 내용을 보완한 것으로, 주로 재상의 직책과 재상의 직무를 비롯해 대간(臺諫)과 감사(監査)는 물론 지방 수령의 직책에 대해 논했다면, "경제문감별집"은 임금의 도리를 논한 "군도(君道)"와 임금의 도리를 역철학(易哲學)의 입장에서 부연한 "의론"으로 구성되어 있다. 즉, "경제문감"이 중국과 우리나라 역대 왕조의 재상 제도의 변천과 득실(得失)은 물론 재상의 직책과 진퇴의 자세를 상세히 기술하였을 뿐만 아니라 대간(臺諫), 위병(衛兵), 감사(監司), 수령(首領)의 직책과 직무에 대해 논하고 있으며, "경제문감별집"은 군주는 절대 권력을 휘두르는 것이 아니라, 군주수신(君主修身)을 통해 마음을 바로잡고 덕을 닦아 어질고 유능한 재상을 임명해 정치하게 하는 상징적인 존재로서 기능해야 한다고 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.