• Title/Summary/Keyword: Power tiller-trailer

Search Result 20, Processing Time 0.204 seconds

Motion Analysis of Power Tiller for Stability Improvement -Development of A Mathematical Model of Motion for Power tiller-Trailer System (동력경운기(動力耕耘機)의 안정성(安定性) 향상(向上)을 위한 주행(走行) 및 선회(旋回)에 관(關)한 연구(硏究)(II) -동력경운기(動力耕耘機)-트레일러 시스템의 운동(運動)모델의 개발(開發))

  • Park, K.J.;Ryu, K.H.;Chung, C.J.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.3
    • /
    • pp.17-29
    • /
    • 1987
  • A 10-degree of freedom mathematical model of motion for power tiller-trailer system was developed. This model can predict motion characteristics of power tiller trailer system while travelling over smooth and irregular ground surfaces under various operating conditions. The model provide, the fundamental data needed to improve the stability of power tiller-trailer systems.

  • PDF

Motion Analysis of Power Tiller for Stability Improvement (III) -Verification of a Mathematical Model of Motion for Power Tiller-Trailer System- (동력경운기(動力耕耘機)의 안정성(安定性) 향상(向上)을 위한 주행(走行) 및 선회(旋回)에 관(關)한 연구(硏究) (III) -동력경운기(動力耕耘機)-트레일러 시스템 운동(運動)모델의 검증(檢證)-)

  • Park, K.J.;Ryu, K.H.;Chung, C.J.;Kim, K.U.;Yoo, S.N.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.2
    • /
    • pp.1-8
    • /
    • 1988
  • A scale model of power tiller-trailer system with the same kinematic characteristics was constructed one eighth of the actual size to validate the effectiveness of mathematical model of motion. The parameters for the scale model of power tiller-trailer system were measured by a series of laboratory experiments. Validation tests for the: scale model was conducted under several ground and operating conditions. The tests were performed on artificial ground surfaces with several kind, of slope and obstacle. The travel path of the scale model was photographed successively in three directions. The travel paths obtained from both the film analysis and the simulation model appeared to be consistent with each other. It was concluded that the simulation model could be used to predict the motion of actual power tiller-trailer system if the parameters for actual power tiller and trailer are provided.

  • PDF

Simulation of Motion and Overturns for Power Tiller-Trailer System (동력경운기(動力耕耘機)-트레일러 시스템의 운동(運動) 및 전도(轉倒) 시뮬레이션)

  • Park, K.J.;Park, U.L.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.27-36
    • /
    • 1992
  • Computer simulation was carried out to predict the motion and overturns of power tiller-trailer system this system when traveing over an obstacle on inclined planes. To estimate the effects of design factors (mass center of main body and wheel base), ground factors (ground inclination and height of obstacle), and operation factors (traveling velocity) on the sideways overturn, the motion of power tiller-trailer system was simulated as the factors were varied with five different levels.

  • PDF

Development of Vibration Absorption Device for the Transportation-Trailer System(II) - Connecting Hitch for Power Tiller-Trailer - (수송 트레일러의 충격흡수장치 개발(II) - 동력경운기 연결 히치 -)

  • Hong J. H.;Lee H. J.;Lee S. B.;Park W. Y.;Kim S. Y.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.3 s.110
    • /
    • pp.147-154
    • /
    • 2005
  • The improved hitch device, which connecting the trailer to power tiller, was developed. This device, composed with spring and rubber, could reduce the vibration and shock levels during driven on off-road. The vertical vibration accelerations for the improved hitch device were measured at 6 positions, i.e. engine, hitch, seat, and three points in trailer (front, middle, and rear) for not driving but at low engine speed of 500 rpm, and compared with the existing hitch device. The results of this study could be summarized as follows; The average vibration acceleration up to 120 Hz was $0.4m/s^2$ at engine part, but it was 0.08 and $0.05m/s^2$ at trailer for existing and improved hitch device, respectively. About $38\%$ of average acceleration level could be absorbed for the improved hitch device compared with existing hitch device. The average vibration acceleration up to 40 Hz was reduced to 0.12 and $0.06m/s^2$ at trailer for existing and improved hitch device respectively, showing the reduction effect of $50\%$. The maximum acceleration occurred at up to 20 Hz of low frequency was much higher than total acceleration occurred at up to 120 Hz, which means that much loss or damage could be occurred during transporting of agricultural products on off-road. The portions of average acceleration occurred at up to 20 Hz of low frequency were $27\%\;and\;21\%$ for the existing and improved hitch device, respectively.

Development of Vibration Absorption Device for the Transportation-Trailer System(I) - Characteristics for the existing vehicle - (수송 트레일러의 충격 흡수 장치 개발(I) - 보급기종에 대한 특성 및 진단 -)

  • 이홍주;홍종호;이성범;김성엽
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.89-96
    • /
    • 2003
  • This study was aimed to identify how the main body vibration of power tiller will be transmitted to the trailer, and to find out the basic information for demage reducing method of agricultural products during transportation. The vertical vibration acceleration level was measured at 6 positions, i.e. engine, hitch, seal and three parts of trailer (front middle, and rear) for the not driving but at the engine speeds of 1,000rpm and driving at 0.35m/s. The results of this research could be summarized as follows; 1. For not driving, the accumulated acceleration level up to 120Hz was 50% of total accelerations at engine part and those were 28~41% at other parts. Those up to 40Hz were 20~30% at engine and hitch part and 2~8% at trailer part. And those up to 20Hz were 13~20% at engine and hitch part and 1~4% at trailer part 2. For the driving with 0.35m/s at paved road, the average vertical accelerations were in the range of 0.005~0.058m/s$^2$. The lowest value of 0.005m/s$^2$ was showed at engine part and the value of 0.031-0.058m/s$^2$ was showed at trailer part. 3. For the driving with 0.35m/s, the accumulated value of average vertical accelerations showed the lowest value at engine parts md showed 5 times value of engine part at trailer part especially highest value at middle part of trailer. 4. For the driving with 0.35m/s, the accumulated acceleration level up to 120Hz was 75% of total accelerations at engine part and those were 20~42% at other parts. Ant those up to 20Hz and 40Hz were 24~26% at engine part and 0.1~0.6% at trailer part.

Survey on the Utilization of Power Tiller (동력경운기 이용실태에 관한 조사연구 (김천 금릉지구))

  • 김창수
    • Journal of Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.67-74
    • /
    • 1979
  • This survey was carried out to grasp the actual condition of a power tiller utilization . Now, the power tiller has become the leading machinery in the field of agriculture throughout the country . Two hundred farm houses, located in the provincial districts of Kimcheon and kum0rung, hav etaken part in the survey from October 1, 1976 to September 30, 1977. The results are summarized as follows . 1. The average size of cultivated land of a farm household in the districts surveyed was 1.77ha which was bigger than that of whole country. And the average age of power tiller drivers was analyzed in which only 105 of total drivers was on their 30's. 2. Distribution of a power tiller utilization was appeared to be 34.4% for transporting , 24% for tilling , 23% for pumping , 11.5% for threshing and 6.6% for spraying. 3. Frequency of a power tiller utilization was high during the month of June, July and October while it was low during February and December . 4. Distribution of repairing cost was 8.5% for trailer, 7.1% for throttle lever and 6.7% for casket, respectively. The annual cost for repairing was 5,290 won.5. The annual cost for using a power tiller was composed of 51.5% of fixed cost and 48.5% of operating cost. 6. Economic analysis showed that it was not economically practical for individual ownership of a power tiller on the farm surveyed. Therefore, custom operation and joint ownership by a few farmers were recommended.

  • PDF

Estimation on the Coefficient of Repair & Maintenance Costs for Power Tiller (경운기의 수리비계수(修理費係數) 산정(算定)에 관한 연구(硏究))

  • Kang, C.H.;Park, N.J.;Jung, D.H.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.143-150
    • /
    • 1990
  • This study was conducted to estimate the ratio of Repair & Maintenance (R&M) costs to purchasing price that is one of the important factors for calculating the management costs of farm machinery. For this purpose, hour of use and R & M costs of power tiller and its attachments utilized results that were investigated with 400 sample units, 50 units by years of use from 1 to 8 years in 1988. The results obtained are summarized as follows; 1. The ratio of R & M costs per hours and annual R & M costs, accumulated R & M costs when sercice life of power tiller is 7 years were 0.017%, 5.50% and 38.52%, respectively. And in case of rotary, these ratio when its service life is 6 years were 0.072%, 7.16% and 43.0%, respectively. 2. The relationship between accumulated hours of use(t) and accumulated R & M costs(Y) of power tiller and its attachments were $Y=19.3t^{1.3}$ in power tiller, $Y=0.03t^{2.09}$ in plow, $Y=48.84t^{1.25}$ in rotary and $Y=7.45t^{1.15}$ in trailer. 3. The ratio of accumulated R & M costs to purchasing price when service life of power tiller is 7 years was 38.5%, and in case of rotary, this ratio when its service life is 6 years was 43.0%.

  • PDF

Optimum Transport Systems of Agricultural Products(II) -Vibration characteristics of the transporting traliler- (농산물 수송 최적화 시스템 (II) -트레일러의 진동 분포 특성-)

  • 홍종호;이홍주
    • Journal of Biosystems Engineering
    • /
    • v.26 no.4
    • /
    • pp.315-322
    • /
    • 2001
  • Agricultural products can be damaged due to the vibration of transporting trailer on the off-road. So, this study was conducted to identify the vibration characteristics of the agricultural products transporting trailer by measuring the vertical acceleration according to positions on the trailer loaded with agricultural products. The results of this study can be summarized as follows: 1. At non-operating state of engine, the larger vertical acceleration was occurred at rear side compared with front side in the case of 4.5Hz of vibration frequency. But, in the case of 53.5Hz of frequency, the maximum vertical acceleration at front side of trailer was higher than value at rear side. So, the maximum acceleration at front side of the trailer was increased with the increase in frequency. 2. At operating state of engine, the maximum vertical acceleration at front side of the trailer was increased with the increase in frequency. 2 At operating state of engine, the maximum vertical acceleration delivered through the hitch from the engine was occurred at front side of the trailer as $3.0\times10^{-3}m/s^2$, in the case of 8.75Hz of frequency. But, in the case of 102.5Hz of high frequency, the maximum vertical acceleration was occurred at rear side of the trailer. 3. When the power tiller loaded with pear of 325kg was travelling on the artificial uneven road of 3cm height, the maximum acceleration was occurred at rear side of the trailer as $4.7\times10^{-3}m/s^2$at 3.75Hz of frequency. But, that was occurred at diagonal of the trailer 43.5Hz and 91.25Hz, which meant that there was rolling and pitching on the trailer. 4. At operating state of engine, the mean acceleration of the trailer delivered through the hitch according to the increase in frequencies was showed the maximum value at range of 40-90Hz. At rear side of traiㅣer, the maximum value was occurred at about 40Hz, and that was reduced according to the increase in frequencies and diminished at about 100Hz. 5. When the power tiller loaded with pear of 32.5kg was travelling on the artificial uneven road of 3cm height, the mean acceleration by the increase in frequencies was showed lower level at rear side than front side of the trailer. This was opposite configuration to the Hinsch’s results tested with air-conditioned truck. This means that the shorter length of the trailer, the more effect of engine vibration is transferred to the front side of trailer.

  • PDF

Development of a Power-tiller TMF Mixer (동력경운기 견인형 TMF 배합기의 개발)

  • Jo, Gi-Hyeon;Lee, Jeong-Taek;Baek, Lee
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.97-106
    • /
    • 2003
  • One of the obstructing factors against managing dairy fm has been heavy labor requirement for feeding dairy cows. A Power-tiller TMF mixer was developed to reduce the cost and to provide economic benefit. The TMF mixer was desisted by the feeding capacity of 20∼30 heads at a batch with various functioning systems of auger type mixer, delivery conveyer, weighing console, pipe heater type heating system, power transmission train and mounting trailer. According to the study resulted, it showed that 1,200rpm, 1,600rpm, 2,000rpm and 2,300rpm were 6ps. Bps, lops and 12ps respectively. and that reduced shaft output by 15%. On the fodder mixer attached powertiller, initial output was necessary large torque. And the heating system was maintaining uniform temperature 60$^{\circ}C$ relatively.

Development of Vibration Absorption Device for the Transportation-Trailer System (III) - Leaf Spring Suspension Device - (수송 트레일러의 충격흡수장치 개발(III) -평판 스프링 현가장치-)

  • Hong, J.H.;Park, W.Y.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.4
    • /
    • pp.224-229
    • /
    • 2008
  • This study was aimed to minimize the impact force and vibration transmitted to the transporting materials from the trailer and wheel shaft by installing the leaf spring suspension device at the space between the wheel shaft and frame of power tiller trailer. The developed trailer equipped with leaf spring suspension device was compared to the existing trailer without suspension device, in order to identify the vibration absorption effect of the leaf spring. The results of this study could be summarized as follows; (1) The length and the maximum bending amount of the leaf spring were designed as 1,000 mm and 42 mm, respectively, considering the possible space for installing at below the trailer. When 4 leaf springs were installed on both wheel shafts, the allowable maximum load was identified as 9,418 N. (2) The average vibration accelerations for the frequency less than 20 Hz, where the severe transporting loss could be represented, were $0.017\;m/s^2$ and $0.133\;m/s^2$ for the developed and the existing trailer, respectively, showing the vibration absorption effect of about 87%. And the average vibration accelerations on the driver's seat for the frequency less than 20 Hz were $0.01\;m/s^2$ and $0.20\;m/s^2$ for the developed and the existing trailer, respectively, which showed the similar vibration absorption effect. (3) The change of the average vibration accelerations for the frequency from 20 Hz to 80 Hz showed the similar tendency with the result for the frequency less than 20 Hz, but the effect for developed trailer was reduced slightly. And the effect of vibration absorption for the above 80 Hz was reduced highly. However, by installing the leaf spring suspension device at the trailer, the low frequency below 40 Hz, which could affect on transporting loss severely, could be reduced highly. (4) The maximum vibration acceleration for the frequency less than 20 Hz were $0.027\;m/s^2$ and $1.267\;m/s^2$ for the developed and the existing trailer, respectively. And the change of maximum acceleration between 20 Hz and 120 Hz was showed similar tendency with the result for the frequency less than 20 Hz, but the width of change was reduced highly.