• Title/Summary/Keyword: Power system stabilizer(PSS)

Search Result 111, Processing Time 0.021 seconds

Design of an Adaptive Neurofuzzy-Based Power System Stabilizer (적응 뉴로 퍼지 전력계통 안정화 장치의 설계)

  • Jeong, Hyeong-Hwan;Jeong, Mun-Gyu;Kim, Sang-Hyo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.11
    • /
    • pp.497-505
    • /
    • 2001
  • The power system stabilizer(PSS) is important for the suppression of low-frequency oscillation and the improvement of system stability. In this paper, An Adaptive Neurofuzzy-based Power System Stabilizer(ANF PSS) is proposed as the new PSS type. The proposed PSS employs a multi-layer adaptive network. The network is trained directly from the input and the output of the generating unit. The algorithm combines the advantages of the Artificial Neural Network(ANN) and Fuzzy Logic Control(FLC) schemes. Studies show that the proposed ANF PSS can provide good damping of the power system over the wide range of operating conditions and improve the dynamic performance of the system.

  • PDF

Time Division Proportional-Integral Power System Stabilizer Using The Gradiant Method (기울기 방법을 이용한 시분할 PI 전력계통 안정화 장치)

  • Jung, Hae-Won;Baek, Young-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.900-902
    • /
    • 1997
  • Stabilization of Power systems is investigated using a proportional-integral power system stabilizer(PI PSS). Time division PI PSS is examined in this paper. Two approaches are presented for determining the optimal stabilizer gains of the proposed PI PSS. Simulation results show that the proposed PI PSS yields better system dynamic performance and stability than the sub-optimal stabilizer in the sense of having greater damping in response to a step disturbance.

  • PDF

An Optimal Parameter Selection of Power System Stabilizer using Immune Algorithm (면역 알고리즘을 이용한 전력 계통 안정화 장치의 최적 파라미터 선정)

  • Jeong, Hyeong-Hwan;Lee, Jeong-Pil;Jeong, Mun-Gyu;Lee, Gwang-U
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.9
    • /
    • pp.433-445
    • /
    • 2000
  • In this paper, optimal tuning problem of power system stabilizer(PSS) using Immune Algorithm(IA) is investigated to improve power system dynamic stability. In proposed method, objective function is represented as antigens. An affinity calculation is embedded within the algorithm for determining the promotion or suppression of antibody. An antibody that most fits the antigen is considered as the solution to PSS tuning problem. The computaton performance by the proposed method is compared with Genetic Algorithm(GA). The porposed PSS using IA has been applied for two sample system, single-machine infinite bus system and multi-machine power system. The performance of the proposed PSS is compared with that of conventional PSS. It is shown that the proposed PSS tuned using immune algorithm is more robust than conventional PSS.

  • PDF

The Effect of input signals for improving Power System Stabilizer(PSS) efficiency (전력계통 안정화장치(PSS)의 성능향상을 위한 입력신호 영향)

  • Hur, Jin;Kim, Dong-Joon;Kim, Tae-Kyun;Shin, Jeong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.144-146
    • /
    • 1999
  • This paper provides an analysis of the effect of input signals, such as acceleration power and generator shaft speed for improving Power System Stabilizer(PSS) efficiency. We consider a single machine and infinite bus system which is modeled by PSCAD/EMTDC. We choose an optimum stabilizer gain with respect to eigenvalue analysis and transient stability analysis to each input signal.

  • PDF

A Tuning Method for the Power System Stabilizer of a Large Thermal Power Plant and Its Application to Real Power System : PART II - Field Tests and Verification of PSS Performance (대형 화력발전기 전력계통 안정화장치(IEEEST-PSS)의 정수선정 기법과 실계통 적용: PART II - PSS 현장 성능시험 절차 및 성능검증)

  • Shin, Jeong-Hoon;Nam, Su-Chul;Baek, Seung-Mook;Song, Ji-Young;Lee, Jae-Gul;Kim, Tae-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.114-121
    • /
    • 2011
  • This paper, as the second part of the paper, dealt with the field test and test results to validate PSS(Power System Stabilizer) parameters which are previously tuned in Part 1 paper. In Part 1 of the paper, the selection of parameters such as lead-lag time constants for phase compensation and system gain was optimized by using linear & eigenvalue analyses and they were verified through the time-domain transient stability analysis. In part 2, the performance of PSS was finally verified by the generator's on-line field test. Through the comparisons of simulation results and measured data before and after tuning of the PSS, the models of generator and its controllers including AVR, Governor and PSS used in the simulation are verified and confirmed.

Optimal Parameter Selection of Power System Stabilizer using Genetic Algorithm (유전 알고리즘을 이용한 전력시스템 안정화 장치의 최적 파라미터 선정)

  • Chung, Hyeng-Hwan;Wang, Yong-Peel;Chung, Dong-Il;Chung, Mun-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.683-691
    • /
    • 1999
  • In this paper, it is suggested that the selection method of optimal parameter of power system stabilizer(PSS) with robustness in low frequency oscillation for power system using Real Variable Elitism Genetc Algorithm(RVEGA). The optimal parameters were selected in the case of power system stabilizer with one lead compensator, and two lead compensator. Also, the frequency responses characteristic of PSS, the system eigenvalues criterion and the dynamic characteristic were considered in the normal load and the heavy load, which proved usefulness of RVEGA compare with Yu's compensator design theory.

  • PDF

A Study on the Design of Power System Stabilizer using Real Variable Genetic Algorithm (실변수 유전알고리즘을 이용한 전력계통 안정화장치 설계)

  • Lee, Sang-Keun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.10
    • /
    • pp.479-485
    • /
    • 2000
  • This paper presents a analysis method for dynamic characteristics of power system using a Genetic-based Power System Stabilizer(PSS). The proposed PSS parameters are optimized using Genetic Algorithm(GA) in order to maintain optimal operation of generator under the various operating conditions. To decrease the computational time, real variable string is adopted. The results tested on a single machined infinite bus system verify that the proposed controller has better dynamic performance than conventional controller.

  • PDF

Parameter Selection Method for Power System Stabilizer of a Power Plant based on Hybrid System Modeling (하이브리드시스템 모델링 기반 발전기 전력시스템 안정화장치 정수선정 기법)

  • Baek, Seung-Mook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.883-888
    • /
    • 2014
  • The paper describes the parameter tuning of power system stabilizer (PSS) for a power plant based on hybrid system modeling. The existing tuning method based on bode plot and root locus is well applied to keep power system stable. However, due to linearization of power system and an assumption that the parameter ratio of the lead-lag compensator in PSS is fixed, the results cannot guarantee the optimal performances to damp out low-frequency oscillation. Therefore, in this paper, hybrid system modeling, which has a DAIS (differential-algebraic-impusive-switched) structure, is applied to conduct nonlinear modeling for power system and find optimal parameter set of the PSS. The performances of the proposed method are carried out by time domain simulation with a single machine connected to infinite bus (SMIB) system.

Optimal Tuning of Nonlinear Parameters of a Dual-Input Power System Stabilizer Based on Analysis of Trajectory Sensitivities (궤도민감도 분석에 기반하여 복입력 전력시스템 안정화 장치(Dual-Input PSS)의 비선형 파라미터 최적화 기법)

  • Baek, Seung-Mook;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.915-923
    • /
    • 2008
  • This paper focuses on optimal tuning of nonlinear parameters of a dual-input power system stabilizer(dual-input PSS), which can improve the system damping performance immediately following a large disturbance. Until recently, various PSS models have developed to bring stability and reliability to power systems, and some of these models are used in industry applications. However, due to non-smooth nonlinearities from the interaction between linear parameters(gains and time constants of linear controllers) and nonlinear parameters(saturation output limits), the output limit parameters cannot be determined by the conventional tuning methods based on linear analysis. Only ad hoc tuning procedures('trial and error' approach) have been used. Therefore, the steepest descent method is applied to implement the optimal tuning of the nonlinear parameters of the dual-input PSS. The gradient required in this optimization technique can be computed from trajectory sensitivities in hybrid system modeling with the differential-algebraic-impulsive-switched(DAIS) structure. The optimal output limits of the dual-input PSS are evaluated by time-domain simulation in both a single machine infinite bus(SMIB) system and a multi-machine power system in comparison with those of a single-input PSS.

The Application of Real Time Digital Simulator for Analyzing the Performance of Power System Stabilizer(PSS) (전력계통 안정화장치(PSS)의 성능 분석을 위한 실시간 디지털 시뮬레이터 응용)

  • Hur, Jin;Kim, Dong-Joon;Moon, Young-Hwan;Shin, Jeong-Hoon;Kim, Tae-Kyun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.9
    • /
    • pp.459-466
    • /
    • 2000
  • The performance of a commercialized power system stabilizer (PWX-600) for a single hydro-turbine generator and infinite bus system has been investigated using Real Time Digital Simulator (RTDS) in this paper. The test system was composed of RTDS, three phase voltage/current amplifier and the PSS. The test scheme provided a very efficient way to verify the design and control performance of a PSS to be applied to real power system. The scheme can also be applied to verify in real time the performance of hardware and software of power system controllers for FACTS and protective relays effectively.

  • PDF