• Title/Summary/Keyword: Power system reliability evaluation

Search Result 352, Processing Time 0.03 seconds

Power Interruption Cost Calculation based on Value-based Methodology (가치평가법을 사용한 정전관련비용의 산정)

  • Lee, Buhm;Kim, Kyoung-Min;Choi, Nam-Sup
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.293-300
    • /
    • 2021
  • This study presents a Power Quality(:PQ) costs calculation methodology based on Value-Based Methodology. A SCDF including Voltage Sag Costs is presented to calculate Sustained Interruption Costs, Momentary Interruption Costs, and Voltage Sags Costs. Authors compared between interruption costs without Back-Up Power Supply and interruption costs with Back-Up Power Supply, and showed reduction of interruption costs by investing Back-UP Power Supply by multi-lateral analyzation. By applying this method to the real system, evaluated and analyzed power quality of the system.

Comparative Analysis on the Performance of NHPP Software Reliability Model with Exponential Distribution Characteristics (지수분포 특성을 갖는 NHPP 소프트웨어 신뢰성 모형의 성능 비교 분석)

  • Park, Seung-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.641-648
    • /
    • 2022
  • In this study, the performance of the NHPP software reliability model with exponential distribution (Exponential Basic, Inverse Exponential, Lindley, Rayleigh) characteristics was comparatively analyzed, and based on this, the optimal reliability model was also presented. To analyze the software failure phenomenon, the failure time data collected during system operation was used, and the parameter estimation was solved by applying the maximum likelihood estimation method (MLE). Through various comparative analysis (mean square error analysis, true value predictive power analysis of average value function, strength function evaluation, and reliability evaluation applied with mission time), it was found that the Lindley model was an efficient model with the best performance. Through this study, the reliability performance of the distribution with the characteristic of the exponential form, which has no existing research case, was newly identified, and through this, basic design data that software developers could use in the initial stage can be presented.

A Study on Analysis Model for Economic Evaluation of Battery Energy Storage System (전지전력저장시스템의 경제성 평가를 위한 분석모델의 연구)

  • Kim, Eung-Sang;Kim, Ho-Young;Ko, Yo;Rim, Seong-Jeong;Kim, Jae-Chul
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.5
    • /
    • pp.75-82
    • /
    • 1996
  • The Battery Energy Storage System(BESS) can help the load factor improved by discharging the battery energy when the load is peak in the daytime. BESS has the advantages such as spinning reserve, control of voltage and frequency, deferment of investment for generation and transmission capacity construction, and reliability improvement of utility power service. To develop BESS and to apply it to Korea's power system, economic evaluation must be preceded. In this paper, we analyzed the investment costs, by modifying and complementing the Sysplan Model, through the economic assessment.

  • PDF

An Evaluation of Reclosing Schemes in Korean Transmission Systems Considering Transient Stability (과도 안정도를 고려한 국내 송전선로 재폐로 방식 평가)

  • Oh, Yun-Sik;Gwon, Gi-Hyeon;Park, Ji-Kyung;Jo, Kyu-Jung;Sohn, Seung-Hyun;Kim, Chul-Hwan;Kim, Wan-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.731-736
    • /
    • 2013
  • Most of faults occurring in transmission lines are transient faults. For such faults, automatic reclosing is economic and effective method to improve the reliability and transient stability of power system. Many countries apply various reclosing schemes considering issues of their own systems such as transient stability, rate of success. Currently, different reclosing schemes are applied in Korean transmission systems according to a rated voltage. In this paper, we conduct an evaluation of reclosing schemes in Korean transmission systems considering transient stability. Computer simulations are performed by using ElectroMagnetic Transient Program (EMTP) and transmission system is modeled based on actual data of Korea.

A Brief Review of Power Semiconductors for Energy Conversion in Photovoltaic Module Systems (태양광 모듈 시스템의 에너지 변환을 위한 전력 반도체에 관한 리뷰)

  • Hyeong Gi Park;Do Young Kim;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.133-140
    • /
    • 2024
  • This study offers a comprehensive evaluation of the role and impact of advanced power semiconductors in solar module systems. Focusing on silicon carbide (SiC) and gallium nitride (GaN) materials, it highlights their superiority over traditional silicon in enhancing system efficiency and reliability. The research underscores the growing industry demand for high-performance semiconductors, driven by global sustainable energy goals. This shift is crucial for overcoming the limitations of conventional solar technology, paving the way for more efficient, economically viable, and environmentally sustainable solar energy solutions. The findings suggest significant potential for these advanced materials in shaping the future of solar power technology.

Welding process for manufacturing of Nuclear power main components (원자력 발전 주기기 제작에 적용되는 용접공정)

  • Jung, In-Chul;Kim, Yong-Jae;Shim, Deog-Nam
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.43-46
    • /
    • 2010
  • As the nuclear power plant has been constructed continuously for several decades in Korea, the welding technology for components manufacturing and installation has been improved largely. Standardization for weld test and qualification was also established systematically according to the concerned code. The welding for the main components requires the high reliability to keep the constant quality level, which means the repeatability of weld quality. Therefore the weld process qualified by thorough test and evaluation is able to be applied for manufacturing. Narrow gap SAW and GTAW process are usually applied for girth seam welding of pressure vessel like Reactor vessel, steam generator, and etc. For the surface cladding with stainless steel and Inconel material, strip welding process is mainly used. Inside cladding of nozzles is additionally applied with Hot wire GTAW and semi-auto welding process. Especially the weld joint having elliptical weld line on curved surface needs a specialized weld system which is automatically rotating with adjusting position of the head torch. The small sized pipe, tube, and internal parts of reactor vessel requests precise weld processes like an automatic GTAW and electron beam welding. Welding of dissimilar materials including Inconel690 material has high possibility of weld defects like a lack of fusion, various types of crack. To avoid these kinds of problem, optimum weld parameters and sequence should be set up through the many tests. As the life extension of nuclear power plant is general trend, weld technologies having higher reliability is required gradually. More development of specialized welding systems, weld part analysis and evaluation, and life prediction for main components should be taken into a consideration extensively.

  • PDF

A Study on Measurement Selection Algorithm for Power System State Estimation Under the Consideration of Observability (가관측성을 고려한 전력개통 상태추정을 위한 측정점선정 알고리즘에 관한 연구)

  • Lee, T.S.;Lee, E.H.;Rho, T.H.;Hong, H.S.;Kuk, H.J.;Moon, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.523-526
    • /
    • 1995
  • This paper presents an improved algorithm of optimal measurement system design with a reliability evaluation method for a large power system. The proposed algorithm is developed to cosider the observability and to achieve highest accuracy of the state estimator as well with the limited investment cost. When the effect on these dummy bus measurements is considered in the proposed algorithm the other errors in the power system is also detected and then analyzed until to achieve the limited values. By taking advantage of the matrix sparsity and the optimal bus ordering the memory and the time are successfully reduced in the P/C's and workstation's model. The improved program is successfully tested for IEEK sample system and KEPCO system with PSS/E lineflow calculated data package.

  • PDF

Simultaneous Measurement of Vibration and Applied Forces at a Power Tool Handle for the Reduction of Random Error When valuating Hand-transmitted Vibration (수전달 진동평가량의 랜덤오차 저감을 위한 공구 핸들에서의 진동과 작용력의 동시 측정)

  • Choi, Seok-Hyun;Jang, Han-Kee;Park, Tae-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.404-411
    • /
    • 2005
  • To increase accurateness and reliability of the evaluation of power tool vibration transmitted to an operator, it is necessary to measure the grip and feed forces during the measurement of hand-transmitted vibration. In the study a system was invented to measure the vibration and the grip and/or feed force, which consists of a measurement handle and a PC with a data acquisition system and the corresponding software. Strain gauges and an accelerometer were mounted on the handle surface for the simultaneous measurement of the forces and the vibration. The program in the system makes it possible to monitor the grip and feed force during the tool operation so that the operator keeps the applying forces within the pre-determined range. Investigating the vibration total values, frequency-weighted root-mean-square accelerations at the handle, obtained in repetition for each power tool with control of the grip and feed force showed more consistency than those measured without force control. By using the system the experimenter can reduce random error of the measured vibration.

The Development of Probabilistic Power Quality Evaluation Method for Electrical Distribution System (배전시스템 전기설비 구성에 따른 확률론적 전력품질의 정량적 평가기법 개발)

  • Kim, Yong-Ha;Lee, Sung-Jun;Woo, Sung-Min;Lim, Hyun-Sung;Son, Seung-Ki;Ku, Min-Seo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.34-43
    • /
    • 2007
  • This paper presents a methodology on the AHP(Analytic Hierarchy Process) to calculate unified power quality index which provide an overall assessment of the distribution system performance. To obtain the unified power quality index. we propose the use of the AHP model and consider contingency using Monte Carlo simulation. The proposed method is especially useful and effective for planning. We have applied the proposed method to an actual relatively large system.

Nodal Probabilistic Production Cost Evaluation using Monte Carlo Simulation Methods (Monte Carlo Simulation을 이용한 각 부하지점별 확률론적 발전비산정)

  • Mun, Seung-Pil;Kim, Hong-Sik;Choe, Jae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.9
    • /
    • pp.425-432
    • /
    • 2002
  • This Paper illustrates a method for evaluating nodal probabilistic production cost using the CMELDC. A new method for constructing CMELDC(CoMposite Power System Equivalent Load Duration Curve) has been developed by authors. The CMELDC can be obtained by convolution integral processing between the probability distribution functions of the fictitious generators outage capacity and the load duration curves at each load point. In general, if complex operating conditions are involved and/or the number of severe events is relatively large, Monte Carlo methods are more efficient. Because of that reason, Monte Carlo Methods are applied for the construction of CMELDC in this study. And IEEE-RTS 24 buses model is used as our case study with satisfactory results.