• Title/Summary/Keyword: Power resource

Search Result 1,530, Processing Time 0.036 seconds

Energy D2D Tx-Rx assignment in the Cellular System

  • Oh, Changyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.8
    • /
    • pp.41-46
    • /
    • 2017
  • In this paper, we investigate the D2D Transmitter(Tx) and Receiver(Rx) pair assignment problem in the cellular system where D2D users share the uplink resource of the cellular system. Sharing the uplink resource of the cellular system may cause interference to the cellular system, though it is beneficial to improve the D2D user Capacity. Therefore, to protect the cellular users, D2D transmit power should be carefully controlled. In this work, we focus on optimal Tx-Rx assignment in such a way that the total transmit power of users is minimized. First, we consider the optimum Tx-Rx assignment in general and the corresponding complexity. Then, we propose an iterative D2D Tx-Rx assignment algorithm with low complexity that can minimize total transmit power of users. Finally, we present the numerical examples that show the complexity and the convergence to the unique transmit power level.

Test Scheduling for System-on-Chips using Test Resources Grouping (테스트 자원 그룹화를 이용한 시스템 온 칩의 테스트 스케줄링)

  • Park, Jin-Sung;Lee, Jae-Min
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.257-263
    • /
    • 2002
  • Test scheduling of SoC becomes more important because it is one of the prime methods to minimize the testing time under limited power consumption of SoCs. In this paper, a heuristic algorithm, in which test resources are selected for groups and arranged based on the size of product of power dissipation and test time together with total power consumption in core-based SoCs is proposed. We select test resource groups which has maximum power consumption but does not exceed the constrained power consumption and make the testing time slot of resources in the test resource group to be aligned at the initial position to minimize the idle test time of test resources.

  • PDF

CPLD Low Power Technology Mapping for Reuse Module Design under the Time Constraint (시간제약 조건하에서 재사용 모듈 설계를 통한 CPLD 저전력 기술 매핑)

  • Kang, Kyung Sik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.3
    • /
    • pp.77-83
    • /
    • 2008
  • In this paper, CPLD low power technology mapping for reuse module design under the time constraint is proposed. Traditional high-level synthesis do not allow reuse of complex, realistic datapath component during the task of scheduling. On the other hand, the proposed algorithm is able to approach a productivity of the design the low power to reuse which given a library of user-defined datapath component and to share of resource sharing on the switching activity in a shared resource. Also, we are obtainable the optimal the scheduling result in experimental results of our using chaining and multi-cycling in the scheduling techniques. Low power circuit make using CPLD technology mapping algorithm for selection reuse module by scheduling.

A Critique of Designing Resource Adequacy Markets to Meet Loss of Load Probability Criterion

  • Yoon, Yong T.;Felder, Frank A.
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.1
    • /
    • pp.35-41
    • /
    • 2003
  • To ensure resource adequacy in restructured electricity markets, policymakers have adopted installed capacity (ICAP) markets in some regions of the United States. These markets ensure that adequate generation exists to satisfy regional Loss of Load Probability(LOLP) criterion. Since the incentives created through ICAP mechanisms directly impact new generation and transmission investment decisions we examine one important factor that links ICAP markets with LOLP calculations;, determining the amount of ICAP credit assigned to particular generation units. First, we review and critique the literature on electric power systems' market failure resulting from demand exceeding supply. We then summarize the method of computing (the LOLP) as a means of assessing reliability and relate this method to ICAP markets. We find that only the expected value of available generation is used In current ICAP markets while ignoring the second and higher order moments, which tends to mis-state the ICAP value of a specific resource. We then consider a proposal whose purpose is to avoid this ICAP assignment issue by switching from ICAP obligations to options. We find that such a proposal may fail to not provide the benefits claimed and suffers from several practical difficulties. Finally, we conclude with some policy recommendations and areas for future research.

Resource Allocation Algorithm Based on Simultaneous Wireless Information and Power Transfer for OFDM Relay Networks

  • Xie, Zhenwei;Zhu, Qi;Zhao, Su
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5943-5962
    • /
    • 2017
  • A resource allocation algorithm based on simultaneous wireless information and power transfer (SWIPT) to maximize the system throughput is proposed in orthogonal frequency division multiplexing (OFDM) relay networks. The algorithm formulates the problem under the peak power constraints of the source and each subcarrier (SC), and the energy causality constraint of the relay. With the given SC allocation of the source, we give and prove the optimal propositions of the formulated problem. Then, the formulated problem could be decomposed into two separate throughput maximization sub-problems by setting the total power to transfer energy. Finally, several SC allocation schemes are proposed, which are energy priority scheme, information priority scheme, balanced allocation scheme and exhaustive scheme. The simulation results reveal that the energy priority scheme can significantly reduce computational complexity and achieve approximate performance with the exhaustive scheme.

Distributed Uplink Resource Allocation in Multi-Cell Wireless Data Networks

  • Ko, Soo-Min;Kwon, Ho-Joong;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.449-458
    • /
    • 2010
  • In this paper, we present a distributed resource allocation algorithm for multi-cell uplink systems that increases the weighted sum of the average data rates over the entire network under the average transmit power constraint of each mobile station. For the distributed operation, we arrange each base station (BS) to allocate the resource such that its own utility gets maximized in a noncooperative way. We define the utility such that it incorporates both the weighted sum of the average rates in each cell and the induced interference to other cells, which helps to instigate implicit cooperation among the cells. Since the data rates of different cells are coupled through inter-cell interferences, the resource allocation taken by each BS evolves over iterations. We establish that the resource allocation converges to a unique fixed point under reasonable assumptions. We demonstrate through computer simulations that the proposed algorithm can improve the weighted sum of the average rates substantially without requiring any coordination among the base stations.

PSO-based Resource Allocation in Software-Defined Heterogeneous Cellular Networks

  • Gong, Wenrong;Pang, Lihua;Wang, Jing;Xia, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2243-2257
    • /
    • 2019
  • A heterogeneous cellular network (HCN) is useful to increase the spectral and energy efficiency of wireless networks and to reduce the traffic load from the macro cell. The performance of the secondary user equipment (SUE) is affected by interference from the eNodeB (eNB) in a macro cell. To decrease the interference between the macro cell and the small cell, allocating resources properly is essential to an HCN. This study considers the scenario of a software-defined heterogeneous cellular network and performs the resource allocation process. First, we show the system model of HCN and formulate the optimization problem. The optimization problem is a complex process including power and frequency resource allocation, which imposes an extremely high complexity to the HCN. Therefore, a hierarchical resource allocation scheme is proposed, which including subchannel selection and a particle swarm optimization (PSO)-based power allocation algorithm. Simulation results show that the proposed hierarchical scheme is effective in improving the system capacity and energy efficiency.

Queueing Traffic Model of Giving a Priority to Handoff Calls in OFDMA Wireless Communication Systems (핸드오프호를 고려한 OFDMA 무선통신시스템의 확률적 트래픽모형)

  • Paik, Chun-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.36 no.3
    • /
    • pp.45-59
    • /
    • 2011
  • OFDMA systems have been expected to be widely used to provide multimedia services over wireless channels. To evaluate performance of the OFDMA system, power should be considered as system resource as well as subcarriers. This study propose a queueing traffic model incorporating two kinds of resources (power and subcarriers), and an extended model giving a priority to handoff calls over new calls. Some extensive experiments are conducted to illustrate the usefulness of the proposed traffic model.

CADRAM - Cooperative Agents Dynamic Resource Allocation and Monitoring in Cloud Computing

  • Abdullah, M.;Surputheen, M. Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.95-100
    • /
    • 2022
  • Cloud computing platform is a shared pool of resources and services with various kind of models delivered to the customers through the Internet. The methods include an on-demand dynamically-scalable form charged using a pay-per-use model. The main problem with this model is the allocation of resource in dynamic. In this paper, we have proposed a mechanism to optimize the resource provisioning task by reducing the job completion time while, minimizing the associated cost. We present the Cooperative Agents Dynamic Resource Allocation and Monitoring in Cloud Computing CADRAM system, which includes more than one agent in order to manage and observe resource provided by the service provider while considering the Clients' quality of service (QoS) requirements as defined in the service-level agreement (SLA). Moreover, CADRAM contains a new Virtual Machine (VM) selection algorithm called the Node Failure Discovery (NFD) algorithm. The performance of the CADRAM system is evaluated using the CloudSim tool. The results illustrated that CADRAM system increases resource utilization and decreases power consumption while avoiding SLA violations.