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Distributed Uplink Resource Allocation in Multi-Cell
Wireless Data Networks

Soomin Ko, Hojoong Kwon, and Byeong Gi Lee

Abstract: In this paper, we present a distributed resource allocation
algorithm for multi-cell uplink systems that increases the weighted
sum of the average data rates over the entire network under the
average transmit power constraint of each mobile station. For the
distributed operation, we arrange each base station (BS) to allo-
cate the resource such that its own utility gets maximized in a non-
cooperative way. We define the utility such that it incorporates both
the weighted sum of the average rates in each cell and the induced
interference to other cells, which helps to instigate implicit cooper-
ation among the cells. Since the data rates of different cells are cou-
pled through inter-cell interferences, the resource allocation taken
by each BS evolves over iterations. We establish that the resource
allocation converges to a unique fixed point under reasonable as-
sumptions. We demonstrate through computer simulations that the
proposed algorithm can improve the weighted sum of the average
rates substantially without requiring any coordination among the
base stations.

Index Terms: Distributed algorithm, multi-cell, power control,
pricing, uplink, utility.

1. INTRODUCTION

In accordance with the recent growth of high-speed wireless
Internet access, wireless data networks have evolved to provide
high data-rate access. The conventional data networks such as
I1XxEV-DO and high speed packet access (HSPA) [1], [2] used
to be structured asymmetric with fat downlink and skinny up-
link channels, conforming to the asymmetric data traffic such
as web browsing and file downloads [3]. Recently, the demand
for data upload services like user-created content (UCC) has in-
creased rapidly, so the emerging networks such as the mobile
WiMAX network [4] have been designed to allow dynamic con-
trol of bandwidth allocation between the downlink and uplink
channels. This trend requires to develop efficient resource man-
agement techniques for the uplink channel.

There have been reported a good amount of research works
on uplink resource management [3], [5]-{7] but most of them
mainly focused on the case of isolated, single cell without exter-
nal interferences. In practical environments, however, wireless
data networks have a cellular structure that divides the service
area into multiple cells with a base station (BS) deployed in each
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cell and reuses the given frequency spectrum repeatedly in each
cell. This enables to expand the service area arbitrarily large de-
pending on the given frequency bandwidth and transmit power.
However, it makes the resource management more challenging,
as the transmitted signal power in one cell may possibly interfere
the communications in its neighboring cells. Thus, it is impor-
tant to design the resource management scheme such that it can
manage the interaction among the cells efficiently in multi-cell
environment.

As far as the uplink resource management schemes for multi-
cell systems are concerned, there have been reported several al-
gorithms that improve performance in terms of data rate and in-
stantaneous transmission power. Hande et al. [8] proposed a dis-
tributed algorithm that maximizes the sum of data rates with an
instantaneous maximum power constraint of each mobile station
{MS). Saraydar et al. {9] proposed an algorithm that enhances
the ratio of the correctly received bits to the energy consump-
tion. Moretti et al. [10] proposed an algorithm that decreases
the instantaneous total power consumption while satisfying the
instantaneous rate requirement of each MS in a distributed way.
However, all those schemes did not consider the constraints in
the average power consumption of each MS. In practical uplink
systems, however, each MS has a limited battery power and thus
requires to keep the average power consumption below a permit-
ted limit.

In this paper, we are going to propose a resource allocation
algorithm that increases the weighted sum of the average data
rates over the entire network under an average transmit power
constraint of each MS. The proposed algorithm is designed to
operate in a distributed way (i.e., each BS manages the resource
allocation of the MSs within its own cell only, without coordi-
nation among the BSs), since a centralized approach requires
a hierarchical network architecture that is not scalable and not
cost-effective. For such distributed operation, we arrange each
BS to maximize its own utility in a non-cooperative way. The
utility function is designed to incorporate both the weighted sum
of the average rates in each cell and the induced interference to
other cells. This instigates implicit cooperation among the cells
even though each BS cares about only its own utility, and conse-
quently enhances the network-wise performance. Since the data
rates of different cells are coupled through inter-cell interfer-
ences and each BS behaves in a distributed way, the proposed
algorithm allocates the resource in an iterative manner. We es-
tablish that the algorithm converges to a unique fixed point under
some reasonable assumptions. We demonstrate through compu-
ter simulations that the proposed algorithm can improve the
weighted sum of the average rates substantially without requir-
ing any coordination among the BSs.

The rest part of the paper is organized as follows. In
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Fig. 1. An example of muiti-cellular network.

Section I, we describe the system model. In Section III, we
propose a resource allocation algorithm that operates in a dis-
tributed way. Then, in Section IV, we discuss the convergence
property of the proposed algorithm, and finally, in Section V, we
examine the simulation results of the proposed algorithm.

II. SYSTEM MODEL

We consider an uplink system with N cells serving K(=
Zﬁ;l K,,) MSs that are randomly located over the wireless net-
work, where K, denotes the number of MSs within the nth cell,
as illustrated in Fig. 1. We assume that the total frequency band
forms a single channel and the channel is shared by all the cells
in the network.! We assume that the multiple MSs in each cell
transmit signals simultaneously and the receiving BS performs
a successive intra-cell interference cancellation [11] to estimate
the original signals of the transmitting MSs within its own cell.

We adopt the time-division duplex (TDD) as the duplexing
technique. In the TDD system, time is divided into periodic
frames and each frame consists of a downlink data slot followed
by an uplink data slot. We assume a frequency-flat fading chan-
nel with the coherence time being large enough when compared
with the frame interval. We denote by an index pair (n, k) the
kth MS associated with the nth BS and by gg‘h x) the channel
gain between MS (n,k) and BS m. Then, we define the cell
gain matrix associated with BS n, G™, by

g;n,l) ggn,l) 91)’;,1)
9in 9in 9in

gi—| Ynn o2 (n2) o
Inkn) Il k) Il k)

We also define the network gain matrix to be G =
[(GHYT (GHT ... (GM)T]T, where []T denotes the matrix
transpose operation.

We denote by p™(G) = @(n,l)(G) P(n,2) (G) cee P(n,K,,)(G)]T

the cell power vector associated with cell n, where p(,, x)(G) de-

LHowever, it can be easily extended to the case of multiple channels where
the distribution of channel condition is the same for all channels. The objective
and constraint of the problem that we deal with are the weighted sum of the
‘average’ data rates and the ‘average’ transmit power, respectively. Therefore,
the solution of the multi-channel problem is to apply the solution of the single-
channel problem to each channel individually.

notes the transmission power of MS (n, k) for a given network
gain matrix G. Based on this, we define the network power ma-
trix to be P(G) = [p*(G) p?(G) - - - pY(G)]. We also denote by
s*(G) = Zsz"l P(n,k)(G) the cell total power associated with
cell n, and define the network total power vector to be $(G) =
[s1(G) s2(G) --- sV (G)]. We denote by s~"(G) the vector that
remains after separating out s”(G) from s(G), and call it the ex-
ternal total power vector as it represents the transmission powers
of the MSs generating interferences to cell 2. We assume that the
average transmission power of each MS is constrained to be less
than PP, (ie., Be[p(n1) (G)] < P2

As BS n decodes the signals of the multiple MSs by per-
forming intra-cell interference cancellation, the signal-to-noise-
and-interference ratio (SINR) of the signals depends on the
order of decoding (i.e., the SINR increases if decoded later).
We denote by d"(G) the cell decoding order vector associ-
ated with cell n that is given by the permutation of the vec-
tor [(n,1) (n,2) --- (n, K,)]T, which means that BS n de-
codes MS [d"(G)]; first, MS [d"(G)]2 second, and so on.?
We also define the network decoding order matrix D(G) =
[d'(G) d%(G) --- d"(G)]. If BS n decides to decode the signal
from MS (n, k) in the jth order, the SINR of MS (n, k)’s signal
at BS n can be expressed by

Vn ) (P(G), D(G))
B 9o )P (n,ie) (G)
> i1 9 (1P @)1 (6) + I (P(G)) + 02
N K
PG = > > gt ppun(G)

I=1,l#n k=1

2

for the given network gain matrix G, the network power ma-
trix P(G), and the network decoding order matrix D(G). In the
equation the first and the second terms in the denominator repre-
sent the intra-cell interference received from the MSs within cell
n and the inter-cell interference received from the MSs within
the other cells, respectively, and o2 is the noise power. Then, the
achievable data rate of MS (n, k)’s signal at BS n is given by

Rp, 0 (P(6),D(G)) = Blog (1+7,,(P(6),D(G)))

for the total bandwidth B. Thus the weighted sum of the
average data rates in the overall network is given by
Ea[Yony A% thn k) Bl 1y (PG, D(G))], where pin s is
the MS-dependent weighting factor. The weighting factors are
chosen by each BS considering the quality of service (QoS) re-
quirements of the users inside a cell.* We may assume, without
loss of generality, that (1) 2> fi(n,2) = *** 2 P(n,k,) and call
the MSs with the same weighting factor a MS group.

2E 4[] indicates the expectation with respect to random variable A.

3[a]y, indicates the kth element of vector a.

41t is an important issue how to choose the weighting factors to satisfy the
QoS requirements of each user, but it is not within the scope of this paper. We
are interested in improving the weighted sum of the average data rates for the
given weighting factors. '
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III. DISTRIBUTED RESOURCE ALLOCATION (DRA)
ALGORITHM

We investigate how to maximize the weighted sum of the av-
erage data rates in the overall network under the average power
constraint of each MS. We can formulate the optimization prob-
lem as

N K,

pax g;;mn,mﬁ&,k)(l’m),n(e»

subject to Eg[p(n,k) (G)] < Pik),
forn=1,2,--- N, k=12 K,,
P(n,k)(G) >0,
forn=1,2,--- N, k=12,--K,. &

In the case of single-cell (i.e., N = 1), the above problem
becomes a convex optimization problem and the optimal solu-
tion can be determined by exploiting the convexity as proposed
by Knopp ef al. [12] and Tse et al. [5]. In multi-cell environ-
ment, however, it is extremely hard to determine the optimal
solution because, in general, the problem is no longer a convex
optimization problem when N > 1. Moreover, even if we could
find the optimal solution, the optimization requires a hierarchi-
cal network architecture consisting of BSs and a base station
controller that has the information about the channel gains of
all the BS-MS pairs. Since such hierarchical network architec-
ture is not scalable and not cost-effective, the next generation
systems are expected to be built on all-IP horizontal network
architecture [13]. In this case, the BS has to perform radio re-
source management without help of the central controller, so we
devise a distributed suboptimal algorithm called distributed re-
source allocation (DRA) that is compatible with the horizontal
network architecture.

For the distributed operation, we design the DRA algorithm
such that it assigns a utility to each cell individually and makes
each cell determine its strategy (i.e., the cell power vector and
the cell decoding order vector) to maximize its utility. Since the
data rates of different cells are coupled through inter-cell inter-
ferences and each cell behaves in a distributed way, the DRA
algorithm makes each cell maximize its own utility in an iter-
ative manner.® As will be proved in the next section, the DRA
algorithm can determine an equilibrium point in a finite num-
ber of iterations where no cell can improve its utility by chang-
ing its strategy unilaterally. To support such iterative operation,
we consider the frame structure shown in Fig. 2(a) in which a
training period is inserted between the downlink and uplink data
slots. We design the DRA algorithm such that it first determines
the equilibrium point by evolving the strategy iteratively dur-
ing the training period, and then transmits data signal using the
strategy corresponding to the equilibrium point.

In distributed operation, each BS can use only the informa-
tion that it can obtain for itself without any additional signal
exchange among BSs. Thus, we first consider what information
can be obtained by BS n locally. First, BS n can obtain the cell

SLet us consider a two-cell case. If cell A changes its strategy, cell B will
change its strategy because the interference from cell A varies. Then, the inter-
ference from cell B will also vary, so cell A will change its strategy again.
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Downlink data slot Training period Uplink data slot
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Fig. 2. Frame structure: (a) A frame consisting of a downlink data slot,
a training period, and an uplink data slot and (b) a training period
consisting of a feedback mini slot and T3 training mini slots.

Feedback
mini slot

gain matrix G". MS {n, k) can measure the kth row of matrix
G through the pilot signals from the neighboring BSs because
the coherence time is large enough when compared with the
length of a frame in the system model. MSs feed the measured
information back to BS n and then BS n composes G™ using
the feedback information. Second, BS n can measure the value
z" = I, (P(G)) + o2, which is dictated by the strategies de-
termined by the neighboring cells in the previous iteration. We
call this value the external force associated with BS n. Based on
those local information (G™, ™), BS n controls the cell power
vector p” and the cell decoding order vector d™.

Now, we discuss how to define the utility function. In multi-
cell networks, the data rate of a cell increases if the transmis-
sion powers of the MSs within the cell increase but it induces
an increased inter-cell interference in the other cells too. Thus,
a strategy that strives to maximize the weighted sum of the
average rates in one cell may result poor performance in the
network-wise sense due to the inter-cell interference. So we de-
fine the induced interference of BS n, I, . (p™(G",z™)), or
the interference induced by the transmission of the MSs associ-
ated with BS n to the other cells, by

Kn
T 0eea(P”(G™2") = Y A )Py (G, 2™)  (5)
k=1

is the interfering gain of MS

where b, k) = }: ;é g(
unh v function associated with BS

(n, k). Then, we definé the
n by

un (p™(G",2"),d"(G", 2")) =
K,

EG",QJ“ Z u(nk)R?n,k) (Fn(Gn, xn)y a” (Gn?

k=1
- CEG"@" [ mduced( n(Gn,xn))] (6)
"), d*(G",

where the term R7, . (p"(G™,z z™)) emphasizes
that each BS controls only its own strategy based on the local in-
formation, and ¢ denotes the price per unit induced interference
in bps/W. The interference price represents the cost imposed on
each cell for the co-channel interference generated by the cell.
We will discuss how to choose a proper value of the interfer-
ence price in Section V. With this definition of utility, each BS
controls the transmission power of its MSs considering not only
the channel gains between it and the MSs but also the interfer-
ing gains between the neighboring BSs and the MSs. Intuitively,

z"))
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1. During the downlink data slot: Each MS measures
the channel gains between it and all the BSs.
2. During the training period:
During the feedback mini slot: Each MS feeds back
the measured channel gains to its associated BS.
For training mini slot = 1 to T}
During the uplink part:
If training mini slot = 1
Each MS transmits the training signal with
the pre-determined transmission power.
Else )
Each MS transmits the training signal
according to the power determined in the
previous training mini slot.
End
During the downlink part:
Each BS measures the external force.
Each BS determines the optimal cell decoding
order vector and the cell power vector for the
given cell gain matrix and external force.*
Each BS makes the associated MSs know their
transmission power.
End
3. During the uplink data slot: Each MS transmits its
data signal according to the power determined in the
Tith training mini slot.

* The optimal strategy is discussed in subsections III-A and HI-B.

Fig. 3. Description of the DRA algorithm.

the BS tends to permit high transmission power to the MS that
has a high channel gain and a low interfering gain. Therefore,
the utility defined above renders a measure to instigate implicit
cooperation among BSs, which contributes to enhancing the per-
formance in network-wise sense.

Based on the above discussions, we arrange the training pe-
riod to consist of a feedback mini slot followed by T} training
mini slots as detailed in Fig. 2(b), and define the DRA algo-
rithm to take the procedure described in Fig. 3. Note that at each
training mini slot, each BS maximizes its own utility using the
local information that it can receive from the associated MSs or
can measure for itself. This explains how the DRA operates in
a distributed manner. As the training signal is intended to deter-
mine the equilibrium point, the training mini slot may be made
much shorter in length than the data slot. We will discuss how
to choose a proper number of training mini slots in Section V.
In the next two subsections, we discuss the algorithms that de-
termine the optimal strategy to maximize the above utility in the
single and the multiple user cases.

A. Single-User Case

We first consider the case when single user resides in each cell
(i.e., K, = 1), thereby getting insight for handling the multi-
user case. In this case, the utility maximization problem for BS
n is formulated by

p(n,lr)l%%a‘iw") G [R(n’l)(p(n’l)(G e ))]

- CEG",E" [Ii'gduced(p(n,l) (Gn7 xn))]
subject to Egn zn [p(n,1)(G™,2™)] < P,
Px,1)(G",z") = 0. @)

Proposition 1: When a single user (n, 1) exists in cell n, the
optimal solution to the problem in (7) is given by

+
B z”
* Gnvxn = * - ' ’ (8)
P (n1)( ) [,\ (n,1) + hin,1) g?n,l)]
A*(n’l) (EGn’zn [p(n’l) (G’Il, mn)] —_ (1:1-:,;)) = 0, A*(nyl) Z 0

®
where >\*(n,1) is the Lagrange multiplier for the average power
constraint.

Proof: See Appendix A. a

The proposition indicates that the optimal strategy of BS n is

the water-filling allocation with the water level determined by
both the interference price and the average power constraint.

)\*(n,l) is determined to be the value satisfying the average

power constraint of MS (n, 1) with equality or to be zero if such

value does not exist. We can determine A*(n,l) that satisfies the
average power constraint with equality by solving the equation

w2
)™ oo Jh=o 9=0 LA,y +ch g I(n,1)

49 i 1y (R)dR fom (2)d2 (10)

where f,(+) denotes the probability density function (PDF) of
a random variable a. If the solution to the above equation is
negative, we set A" (,, 1) to zero.

B. Multi-User Case

Now we consider the case when multiple users reside in each
cell. In this situation, the problem that BS n has to solve can be
formulated by 7

Egr an [p(nk) (G, ™)) < Py

fork=1,2, -+ Ky,
p*(G",z") = 0.

max
P" (Gn ,m"),d" (Gn ,a:")

subject to

an
Proposition 2: When there are K, users in cell n, and
P(n,1) = M(n,2) = - = H(n,K,)> the optimal strategy of BS
n is given by 8
a6 2" = [(n, Kn) (n, Kna) -+ (n,1)],  (12)
P (G"2") =2 (G",2")/[G"]:m (13)
where 2" (G", 2") = [2"(n,1)(G",2") 2" (n,2)(G",2") ---
2" (n, k) (G™, z)]7 is the optimal vector determined by solving
the problem

0 2(n,») (G™,2™)

K, z
2 (Gram) Z/ -

k=1 2i=0 %(n,5{G™z")

SNote that [z]t = z if z > 0 and O otherwise.

7> indicates the element-wise vector inequality.

8x/y denotes component-wise vector division between x and y and [X]. ; de-
notes the jth column vector of matrix X.
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Fig. 4. llustration of the greedy power allocation for three-MS case.

B Ny +ehnp |
T+ z g?n,k)

subject to z(, 0)(G™,2"™) = 0
"(G™,2™) = 0,
X (n) (B am P (67, 27)] - =)
=0,fork=1,2,---, K,
N =0, fork=1,2,--- K,

?

(14)

where /\*(n, k) is the Lagrange multiplier for the average power
constraint.
Proof: See Appendix B. |
The optimal solution to the problem in (14) can be de-
termined by a simple greedy algorithm, in a similar way to
that proposed in [5]. The greedy algorithm sequentially de-
termines z°(, x)(G™,z"™) for all k in the descending order
of the weighting factors of the MSs (i.e., from MS (n,1)
to MS (n,K,)) as follows: For the kth MS, it increases

Z(n,k)(G", ™) from zero until w,, 1, (Zf:o Z(n,;)(G", z™)) be-
comes less than [max; w(, ;) (Zf:o Z(n,5)(G",z™))]*, where
W(n,k)(2) denotes the marginal utility of MS (n, k) expressed

_ BewB _ XNaptehm
by w("’k)(z) a4z Il k) '

Fig. 4 illustrates the greedy algorithm for a three-MS case
With f(n,1) > l(n,2) = H(n,3)- The z-axis represents the total
interference, which is the summation of the external force and
the intra-cell interference and the y-axis represents the marginal
utility. The crossing point of the marginal utilities of MS (n, 1)
and (n,2), and that of the marginal utility of MS (n,2) and
the z-axis determines an,l) and Z?n,z)’ respectively. In the op-
timal solution, at most one MS, specifically, the MS with min-
X (n ) +Chn.k)

imum , Can use positive transmit power in each

I(n,k)
MS group. Thus, zZ‘n 3) = 0 in this example.
We can determine A™" = [\, 1) A0y -+ A’ (n,K,)] satis-
fying the average power constraint with equality by solving the
equation

ma [ Iwin k) (2) > [max; w5 (2)]]
(n,k) — EGn’E" ) dZ,
z= g(n,k)
fork=1,2,--, K,
(15)
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where I[-] is an indicator function that is 1 if the entity is true,
and 0 otherwise. We can rewrite the right hand side of (15) as
shown in (16), where Fy(-) denotes the cumulative density func-
tion (CDF) of a random variable a. If the solution to the above
equation is negative, we set \* (n,k) to zero. We will discuss a
practical way of calculating the Lagrange multiplier vector in
Section V.

C. Extension to Practical Systems

So far we assumed no constraint on the instantaneous power.
We also assumed that each BS can receive signals from multiple
MSs simultaneously within its own cell aided by the successive
intra-cell interference canceller. In practical systems, however,
MSs cannot increase the transmission power infinitely and the
implementation of successive interference cancellation is highly
complicated. Therefore, we need to extend the DRA algorithm
to more practical environments as demonstrated below.

First, when the maximum instantaneous power constraint is
imposed, each BS solves the problem similar to (11) except for
an additional constraint on the maximum instantaneous power.
Since the problem is still convex, the optimal strategy can be
obtained by solving (12), (13) and a modified version of (14)
which contains the additional maximum instantaneous power
constraint. To solve the problem in (14) with the additional max-
imum instantaneous power constraint, we can use a combinato-
rial greedy algorithm presented in [5] with the number of steps
bounded by 2K,,.

Secondly, when at most one MS can transmit signal at each
time, an additional constraint is needed on the number of
the transmitting MSs. Unfortunately, the resulting new prob-
lem is not convex any longer, so it is difficult to determine
the optimal solution. However, considering the fact that a La-
grange dual function yields an upper bound of the optimal
value, we may use a sub-optimal power allocation algorithm
that modifies the power allocation proposed in Proposition 2.
Specifically, we select MS (n, k) which yields the maximum
un (pP(G™, z"),d"(G", z™)) when the power of MS (n, k) is

Hin,i)B _z"
N tehmry 9 1
MSs are set to zero, and then permit the selected MS to use the

H(n, k) B _z" ]+
Ninmteling  Harl °

+
set to [ ] and the powers of the other

power [

IV. CONVERGENCE OF THE DRA ALGORITHM

In order to check the validity of the DRA algorithm, we need
to prove that it converges to a unique equilibrium point after
iterations. We denote by (n,k), k = 1,2,---, M, the kth MS
within cell n that is allowed to transmit signal. As it is clear that
the allowed users belong to different MS groups, we assume that
H(n,1) > H(n,2) > "+ > I(n,m) Without loss of generality.

Proposition 3: Given that the network gain matrix G re-
mains fixed, the cell total power associated with cell n,
s™(G"™, x™), decreases as the external force of BS n increases,
and the decreasing ratio is smaller than max(, x4 1/ Ity
where A indicates the set of the MSs allowed to transmit at
present time.

Proof: See Appendix C. o
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/_O/x O/hxn—o /hl_o/ M k2+¢:hk)(a:+z fg(n %) (9)dg ]_Ii_[(fh('n 5 (hg)dh;) fon (z)dzdz,

9\ (n,j) + chy) (@ + 2)

(16)

K
1 n
t: —_ F n *
g H I(n3) <()\ (n,k) t che) (@ +2) + gB(k(n,j)

J=1,j#k

= N(n,k))) '

Based on the above proposition, we can establish the exis-
tence and uniqueness of the equilibrium point as follows

Theorem 1: The DRA has a unique fixed equilibrium point
under the following assumptions:

i) Even when only one MS group exists in cell n, there exists
an MS (n, k) such that p(,, x)(G™,z") > 0 for any network
power matrix P(G).°

ii) The noise power ¢ is much smaller than the interference.

Proof: 'We prove the theorem by proving that the power
allocation rule of the DRA is type-1I standard [15] in the sense
of cell total power, that is, it has the following properties:

a) Positivity: s”(G",z™) > 0 for any external total power vec-
tor s~"(G).

b) Type-Il monotonicity: If s~™(G) < § "(G), then
s™(G",z™) > s"(G", &™), where £" denotes the external
force for the external total power vector §~ " (G).

¢) Type-II scalability: For all @ > 1, (1/a)s™(G",z") <
s™(G™, &™), where ™ denotes the external force for the ex-
ternal total power vector as™"(G).

The positivity property is obtained directly from the first as-
sumption and the definition of the cell total power. We can prove
the type-II monotonicity property by applying Proposition 3.

For the type-II scalability property, we first prove that the
property holds in the case that only one MS group exists in cell
n. Proposition 3 implies that increasing the cell total power by
o times does not mean increasing the transmit power of every
MS within the cell by « times individually. Thus, the external
force " for the external total power vector s~ ™(G) may not be
equal to ax™. However, we can prove that ™ is upper bounded
by aBz™ for a finite value 3. See Appendix D for the proof
of this argument. Noting the above argument, we assume that
" = afiz”™. As we assume that only one MS group exists in

10

z
cell n, the reactions against ™ and Z™ are expressed respec-
tively by

s"(G™,z")=a—-b>0,

H(n k)B z"

a= G b= —, 17
A (nk) T Chin,k) I,k

sMG™,E" )Y =a—afb>0 (18)

where MS (n, k) is the MS that has the largest marginal utility in
the MS group and the inequalities are valid due to the positivity
property. In addition, for any o > 1, we get

2ﬂ_1

b>0 (19)

9This assumption is not unrealistic as there would exist at least one MS in
each MS group that has a very high ratio of channel gain to interference gain.
10This assumption is reasonable in interference-limited systems.

due to the positivity property, since (a2 — 1)/(a — 1) is finite
for any e > 1. Using (19), we can derive the inequality

a — affb > i—(a—b) > 0. 20)
Thus, the scalability holds when " = af2™. When " is
smaller than af8z™, the transmission power decrease with re-
spect to £™ is smaller than that with respect to afz™, so the
scalability still holds.

In reality, there may be multiple MS groups in cell n. In this
case, the ratio by which the transmission power decreases when
the external force increases is smaller than that in the single-
group case by Proposition 3. Therefore, we can conclude that
the scalability property also holds in the multi-group case.

It is readily proven in [15] that a type-II standard power allo-
cation rule converges to the unique fixed point without regard to
the initial value, so the network total power vector converges to
an equilibrium for any initial values. Then, one can easily prove
that the network power matrix also converges to an equilibrium

as the network total power vector converges to an equilibrium.
O

V. NUMERICAL RESULTS

In order to confirm the convergence and the performance of
the proposed DRA algorithm, we conducted computer simula-
tions over the wireless uplink system composed of 27 cells and
270 MSs, with a BS with omni-directional antenna residing at
the center of each cell. We considered a hexagonal cell structure
with a cell diameter of 1 km. The 270 MSs are randomly located
in the 27 cell regions by uniform distribution. Each MS is con-
nected to the BS to which the average channel gain, determined
by the path loss and the shadowing, is the maximum among its
neighboring BSs. We adopted the Rayleigh fading model and
assumed that the channel gain remains fixed for one frame and
changes independently from frame to frame. We set the values
of the involved parameters as follows: the total bandwidth, 1Hz;
the maximum average transmission powers of all the MSs, 30
dBm; the path loss exponent, 3.76; the standard deviation of log-
normal shadowing, 8 dB; and the noise power, —120 dBm. We
divided the MSs in each cell into two groups according to their
average channel gain: The top 50% of MSs belong to group B
and the other MSs belong to group A. We set the weighting fac-
tors of the MSs in group A to 1, and varied the weighting factors
of the MSs in group B in the simulations. We set the price of the
induced interference to 1 x 10*2 (bps/W) unless specified other-
wise.

As the calculation process proposed in (16) requires the
(3 + K,)th order integration and full knowledge about the dis-
tribution of the external force, it is hard to obtain the optimal
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Lagrange multiplier vector by using (16). Thus, for computer
simulations, we used the history of the cell gain matrix and the
external force instead of the PDF of them. At the end of each
frame, we recorded the cell gain matrix G™ and the external
force z™ associated with the frame, and updated the optimal La-
grange multiplier vector A™" to satisfy the average power con-
straint of each MS with equality by using the history of G™ and
x™. After enough number of frames are elapsed, we confirmed
the convergence of A*". Fig. 5 plots the Lagrange multipliers of
randomly selected 5 MSs with respect to the number of frames.
It is the result for the case when the weighting factors of all
the MSs are set to 1. We observe that each Lagrange multiplier
of those MSs converges close to a fixed value after about 500
frames.

In order to test the convergence of the DRA algorithm, we de-

fined an empirical index called the normalized square difference
(NSD) by

N n 2
1 sMG"™, 2™ e — $™(G™, M)
NSD= %" ’ oL Jore
N 1 <8n(Gn,xn)cm + Sn(Gn, xn)pre (21)

where s™(G", 2" )y and s™(G™, 2" )y means the cell total
power determined in the current training mini slot and that in the
previous training mini slot, respectively. We measured the NSD
through iterations for two different weighting factors of the MSs
in group B, 1 and 0.5. Fig. 6 depicts the resulting NSDs with re-
spect to the number of iteration. We observe that for both cases,
the DRA algorithm converges to the equilibrium within about 3
iterations. Based on this result, we set the number of the training
mini slots, T3 to 5 in the subsequent simulations.

We then examined the network performance of the DRA algo-
rithm. For performance comparison, we conducted simulations
on two other reference algorithms as well, namely selfish dis-
tributed resource allocation (SDRA) and Hande’s algorithm [8].
In the case of the SDRA algorithm, each BS strives to maximize
the weighted sum of the average rates in its cell (i.e., the price
of the induced interference is set to zero) and other operations
are similar to the DRA.!! The SDRA algorithm may be regarded

11The term ‘selfish’ comes from the fact that even no implicit cooperation
exists among the BSs in the SDRA algorithm.
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Fig. 6. Normalized square differences with respect to the number of
iterations.

as 4 primitive multi-cell version of the resource allocation algo-
rithm which is optimal in the single-cell case proposed in [5].
In the case of the Hande’s algorithm, each BS assigns a target
SINR for each MS and each MS decides its transmission power
through the Foschini-Miljanic method [16} to achieve the target
SINR. Each BS finds the optimal target SINR vector to maxi-
mize the objective function in an iterative manner. The Hande’s
algorithm is optimal for maximizing the weighted sum of in-
stantaneous data rates with the instantaneous power constraint
of each MS. As the Hande’s algorithm only considers the con-
straints on the instantaneous power, we determined the maxi-
mum instantaneous power of each MS that satisfies the average
power constraint by repeating simulations.

Fig. 7 depicts the resulting average rates of the MSs in groups
A and B for the three algorithms, with the weighting factors of
the MSs in group B varied from 1 to 0. We varied the price of
interference for the DRA algorithm from 1 x 10! to 1 x 10%%.
From this figure, we observe three notable results:

1) The DRA algorithm performs best for the price of 1 x
10'3 and the performance degrades when the price goes
above or below that value. The marginal utility of MS (n, k),
W(n,ky(2), Which is introduced in subsection III-B explains
the reason of this phenomenon. If the price is too low, the
Lagrange multiplier predominates over the product of price
and interfering gain (i.e., A" (s, k) > ch(n k). Thus, the DRA
algorithm cannot consider the interfering gain of each user
properly. In contrast, if the price is too high, the DRA algo-
rithm cannot reflect the effect of the average power constraint
of each user properly. A rule of thumb to determine a proper
value of the price is to make the Lagrange multiplier aver-
aged over the MSs in the cell equal to the product of price
and interfering gain averaged over the channel realizations
and the MSs. In the simulation setting, the magnitude of the
price obtained using the above rule is about 1 x 10%3.

2) The trade-off curves are similar to each other for the prices
1 x 10'2,1 x 10" and 1 x 10**. This means that although
the price affects the performance of the DRA algorithm, the
performance is insensitive to the price. Therefore, the DRA
algorithm can work well for a very wide range of prices.
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Fig. 7. Average rates of the MSs in group A and group B, with the
weighting factors of the MSs in group B varying from 1 (left-upper
side) to O (right-lower side).

3) The DRA algorithm outperforms the SDRA algorithm and
the Hande’s algorithm for an appropriately chosen interfer-
ence price. For example, when the average rate of group B
is fixed to 4 bps/Hz, the average rates of group A for SDRA,
Hande’s, and DRA algorithm with the price of 1 x 103 are
1.3,2.2, and 3.0, respectively. Thus, the DRA algorithm gets
a performance improvement of 130% and 36% respectively
over the SDRA and the Hande’s algorithms.

VI. CONCLUSIONS

In this paper, we have presented a new resource allocation al-
gorithm called DRA for multi-cell uplink systems that enhances
the weighted sum of the average rates in the whole network un-
der the average power constraint of each MS. We designed the
DRA algorithm such that it requires no coordination among the
BSs. In the DRA algorithm, each BS implicitly cooperates with
each other by iteratively selecting the best strategy that maxi-
mizes the weighted sum of the average data rate while minimiz-
ing the induced interference to other cell. Such behavior of the
BSs turned out to improve the average data rate significantly in
the network-wise sense when compared with the selfish behav-
ior of BSs not considering the induced interference.

As the cost of the distributed operation, the DRA algorithm
requires some iterative calculations of the transmission power
vector. However, the transmission power vector attained by the
DRA is proven to converge to a unique fixed point for any initial
values, under some reasonable assumptions. Computer simula-
tions revealed that the required number of iterations to converge
to the fixed point is very small, about 3.
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We have adopted the concept of interference price which is
imposed on the interference experienced by other cells and de-
termines the degree of concerns of other cells. It is important to
set the interference price appropriately to obtain an efficient op-
eration of the DRA algorithm. We have proposed a rule of thumb
of determining a proper value of the price, but the determination
of the optimal value that maximizes the overall performance of
the entire network remains as a future work.

APPENDIX
A. Proof of Proposition 1

The problem is the same as that considered in [5] except that
the induced interference term is added to the objective function.
So we can determine the optimal solution by taking an approach
similar to that in [5]. Hence, we only provide an outline of the
solution.

The objective function can be rewritten as

g7 1P, (G", 2™)
Blog (1+ () 20)

Egn g
LE o

= ch(n,1)P(n,1)(G", w")} - (22)

It is clear that the problem is a convex optimization problem, so
we can solve the problem by solving the Lagrange dual problem
{14, p. 223]

min  L(A,1))
Atn,1)

subject to A(n,1) =0 23)

where L()(, 1)) denotes the Lagrange dual function

L()‘(n,l)) =

EG”,:::"

max —
P(n,1)(G™,2™) 20 T

9% 1P,y (G", ™)
Blog (l-i- () F2)

. (A('n,l) + Ch(n,l))p(n,l)((}na xn)} . 24)

The problem of maximizing L(A(,,1)) for a given A, ) is
equivalent to the problem of maximizing the entity in the ex-
pectation operator in (24) for every realization of G" and z™,

i.e.,
gn p , (:”', mn
Bl()g (1 —+ {'”’:1) ( 1)( ))

max

P(n,1)(G™,z™) zn

— (ch(n,1) + An,1))P(n, 1) (G™,2™)

subject to pn,1)(G™,z™) > 0. (25)

By defining the received interference at BS n due to the trans-
mission of MS (n, 1) by 2(»,1)(G", 2") = g{;, 1)P(n,1)(G", z"),
we can rewrite the above problem as

2(n,1)(6™,2™) B
max
#(n,1)(G™,2™) Jo

_ Ay tehen )
x*+z

g?n,l)
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subjectto z(,1)(G™,z™) > 0. (26)

We call the entity in the integral the marginal utility of MS (n, 1)
and denote it by w(y,1)(2). Since w(n,1y(2) is a decreasing func-
tion of z, the optimal solution is to increase z(,,1)(G", ™) from
zero until Wy, 1)(2(n,1)(G", ™)) becomes negative. Then, the
resulting power allocation is given by

+

B z"

Ay Fehny) 9,0

Din,1) = (27

We can determine A, ;) that minimizes the Lagrange dual
function by applying the Karush-Khun-Tucker (KKT) condition
{14, p. 243], which corresponds to (9).

B. Proof of Proposition 2

According to the results derived in [5], for any given power
control, the weighted sum of the average rates is maximized
when the cell decoding order vector is sorted in the ascend-
ing order of the weighting factor (i.e., the MS with the smallest
weighting factor is decoded first, and the one with the largest
weighting factor is decoded last). This cell decoding order vec-
tor is optimal to the problem in (11) since Iy .4(P"(G",z"))
is independent of the decoding order. As H(n,1) 2 HBn2) =
2 H(n,K,), the optimal cell decoding order vector becomes
4" (G",z") = [(n, Ky) (1, K1) -~ (n, 1)].

Then, the objective function of (11) can be rewritten as shown
in (28), where gf;, P(5,0)(G",2") = 0. We can easily prove
that the objective is a concave function, so the problem is also a
convex optimization problem. Thus, we can solve the problem
by solving the Lagrange dual problem

min L(A™)

subjectto A™ = 0 29)

where A" = [A(n 1) A(n,2) *** A(n,k,,)] and the Lagrange dual
function L(A"™) is calculated as shown in (30). The remaining
steps are similar to that in the proof of Proposition 1. In order to
maximize L(A™) for a given A™, BS n determines the cell power
vector that maximizes the entity in the expectation operator for
every realization of G™ and z". The optimal power allocation
is given by the solution to the problem in (14). In addition, the
optimal vector A*" can be determined to be the value satisfying
the average power constraints of all the MSs associated with BS
n with equality or to be zero.

C. Proof of Proposition 3

We consider the three-MS example illustrated in Fig. 4. Since
G” remains fixed, the increase of the external force only causes
the shift of the bold dashed vertical line but the crossing points
of the marginal utilities do not move. The transmit power of MS
(n, 1) is determined by the interval between the bold dashed line
and the crossing point of the utility of MS (n,1) and that of
MS (n,2), so only MS (n,1) decreases its power while MS
(n,2) does not, until the line crosses the crossing point. As
P(n,1y = Z(ml)/g?n,n’ the decreasing ratio is l/g?n,l)' After
the bold dashed line passes over the crossing point of MS (n, 1)
and MS (7, 2), then it is clear that p, ;) = 0 and MS (n, 2)
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decreases its power with the ratio 1/ 9(n,2)- In this example,
(n,3) ¢ A since MS (n, 3) is not allowed to transmit, as men-
tioned in subsection 1II-B.

It is clear that the above discussion can be generalized to M-
allowed MS case: MSs (n, 1), (n,2), -- -, (n, M) decrease their
powers sequentially as the external force increases and thus the
decreasing rate is smaller than max(,, x)c.a 1/ g?n, k-

D. Proof of the Bounded External Force

We consider a cell m that makes an interference of amount
Zsz’“l g?m k)P (m,k) O0 cell n. We assume that the cell total po-
wer of BS m is increased by « times, i.e., 5 = Zszml Dm,k)

m Km

= Ll (Pomb) + Sm) = @k P(my = as™, where
O(m,k) > 0 denotes the power increment of MS (m, k) for k =
1,2,---, K,,. Then, we prove that there exists a finite value
such that

Km K

> Gy Pty + S(m) < @B Gl pyP(maiy- (B

k=1 k=1

By the definition of the power increment, 5(m7 k)» the left hand
side of (31) is upper bounded as

Kom Kum
Z Yl k) P(moe) + O(m.y) < @ max Iim.5) Z P(mk)- (32)
k=1 ’ k=1

Now, we decide 3 to be

max; ge.
= ——md) (33)
I G (m, )

Then, we get
Ko Ko
amax g?m,j) Zp(m,k) —af Z g?m,k)p(m,k)
J k=1 k=1
Km
=0 Y (min gl j) = Gom )Pty < O- (34)
k=1

Thus, the interference caused by the increased transmission
power of cell m is bounded by a8 times that of its previous
interference. Since the same process is applicable to the other
cells, " is upper bounded by aSz™ for a finite value £.
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