• Title/Summary/Keyword: Power resource

Search Result 1,530, Processing Time 0.03 seconds

Instruction Level Resource Usage Analysis Method for Embedded Systems (임베디드 시스템에서 명령어 기반의 자원 사용 분석 방법)

  • Cho, Jae-hwang;Jung, Hun;Shin, Dong-Ha;Son, Sung-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.436-439
    • /
    • 2005
  • As mobile computers and embedded systems are becoming popular recently, we need to study how to utilize the resources such as power, space, CPU clocks, and memory efficiently. In traditional embedded system development, we were interested in resource usage based on hardware but, as software is becoming more important, we need to study how to analyze the resource usage based on software. In this research, we propose a new method called 'Instruction Level Resource Usage Analysis Method' and implement it as a resource usage analysis tool called 'I-Debugger'. I-Debugger is constructed on three layers: debugging layer which controls the execution of software on instruction level, statistic layer which gathers real-time data and convert to useful information, and analysis layer which generate useful information to specific applications. We have applied the debugger to some simple problem and found that our method is useful in developing resource efficient embedded systems.

  • PDF

Voltage and Transient State Analysis of Distribution Line connected to Wind Power Generation (풍력발전이 연계된 배전선로 전압 및 과도상태 해석)

  • Kim, Se-Ho;Na, Kyoung-Yoon;Kim, Gun-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.61-67
    • /
    • 2006
  • The use of the wind energy resource is a rapidly growing area world-wide. The number of installed units is continuously increasing, and therefore, it is important to respect and to deal with the impact of wind power generation system. From the view of an electric grid utility, there is a major problem with the impact of the wind system on the voltage of the electric grid, to which a turbine is connected. In this paper, it is investigated the voltage impact and transient state analysis on distribution line, with which wind power generation system is connected. Connections of wind power system usually occur to voltage drop due to reactive power absorption and sometime result in higher than nominal voltage.

The Wake Characteristics of Tidal Current Power Turbine (수평축 조류발전 후류 특성 및 발전 효율 분석)

  • Jo, Chulhee;Lee, Kanghee;Lee, Junho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.163.2-163.2
    • /
    • 2011
  • Due to global warming, the need to secure an alternative resource has become more important nationally. Due to the high tidal range of up to 9.7m on the west coast of Korea, numerous tidal current projects are being planned and constructed. To extract a significant quantity of power, a tidal current farm with a multi-arrangement is necessary in the ocean. The rotor, which initially converts the energy, is a very important component because it affects the efficiency of the entire system, and its performance is determined by various design variables. The power generation is strongly dependent on the size of the rotor and the incoming flow velocity. However, the interactions between devices also contribute significantly to the total power capacity. Therefore, rotor performance considering the interaction problems needs to be investigated for generating maximum power in a specific field. This paper documents the characteristics of wake induced by horizontal axis tidal current power turbine.

  • PDF

A Study on an Improvement Plan of Plant-Use Electricity for New & Renewable Energy Supported by Electric Power Industry Basis Fund (기반기금 지원 신재생에너지 발전에 대한 소내소비전력 처리방안 연구)

  • Jeon, Byung-Kyu;Kim, Jae-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.678-681
    • /
    • 2007
  • Now Korea depends upon the imported resources for about 97% of total using energy. So from October, 2001 Korean government has supported renewable energy business owners by providing them with Electric Power Industry Basis Fund. Only plant-use electricity of the small hydro power plant is exactly managed, but other renewable energy plants is unprepared or not yet managed. Therefore, in this paper, we'll analyze the plant-use electricity management of the small hydro power and propose improvement plans for plant-use electricity of the photovoltaic power plant.

  • PDF

Characteristics of the Required Signal Power for Multimedia Traffic in CDMA Systems (CDMA 이동통신시스템에서 멀티미디어 트래픽의 요구 신호 전력 특성)

  • 강창순
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6B
    • /
    • pp.593-600
    • /
    • 2002
  • The reverse link signal power required for multimedia traffic in multipath faded single-code (SC-) and multi-code CDMA (MC-CDMA) systems is investigated. The effect of orthogonality loss among multiple spreading code channels is herein characterized by the orthogonality factor. The required signal power in both the CDMA systems is then analyzed in terms of the relative required signal power ratio of data to voice traffic. The effect of varying system parameters including spreading bandwidth, the of orthogonality factor, and the number of spreading codes are examined. Analytical results show that MC-CDMA users transmitting only a single traffic type require significantly more power than SC-CDMA users with only a single traffic type. On the other hand, MC-CDMA users transmitting multimedia traffic require power levels approximately identical to SC-CDMA users with multimedia traffic. The results can be used in the design of radio resource management (e.g., power allocation) scheme for wireless multimedia services.

Hierarchical Multiplexing Interconnection Structure for Fault-Tolerant Reconfigurable Chip Multiprocessor

  • Kim, Yoon-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.318-328
    • /
    • 2011
  • Stage-level reconfigurable chip multiprocessor (CMP) aims to achieve highly reliable and fault tolerant computing by using interwoven pipeline stages and on-chip interconnect for communicating with each other. The existing crossbar-switch based stage-level reconfigurable CMPs offer high reliability at the cost of significant area/power overheads. These overheads make realizing large CMPs prohibitive due to the area and power consumed by heavy interconnection networks. On other hand, area/power-efficient architectures offer less reliability and inefficient stage-level resource utilization. In this paper, I propose a hierarchical multiplexing interconnection structure in lieu of crossbar interconnect to design area/power-efficient stage-level reconfigurable CMP. The proposed approach is able to keep the reliability offered by the crossbar-switch while reducing the area and power overheads. Experimental results show that the proposed approach reduces area by up to 21% and power by up to 32% when compared with the crossbar-switch based interconnection network.

An Evaluation on the Effect of the MSW-RDF Power Generation on the Thermal Efficiency and $CO_2$ Reduction (RDF발전에 의한 열효율향상 및 $CO_2$삭감효과에 대한 평가)

  • Choe, Gap-Seok;Choe, Yeon-Seok;Kim, Seok-Jun;Gwon, Yeong-Bae
    • 연구논문집
    • /
    • s.31
    • /
    • pp.45-51
    • /
    • 2001
  • One of emerging technologies under development in the advanced countries is considered as RDF(Refuse Derived Fuel) power generation, which could meet both the requirement of an alternative energy resource utilization and $CO_2$ reduction. This paper deals with the effect to the thermal effiency and CO2 reduction of RDF firing power generation. The statistical data of domestic MSW generation in last year in small and medium cities for evaluating the merits of the RDF power generation were used. The analysis for RDF power generation compared to the existing incinerator w/o(or w/) power generation shows around 20.6%(10.0%) up in the total thermal efficiency and 57.0%(31.4%) up in the $CO_2$ reduction respectively.

  • PDF

A Study on the Power Interconnection in the Northeast Asian Region (동북아 에너지협력을 위한 전력계통 연구 : 러시아와의 전력계통 연계를 중심으로)

  • Kim, Hyun Jae;Roh, Dong Seok;Jo, Sung Han
    • Environmental and Resource Economics Review
    • /
    • v.17 no.3
    • /
    • pp.167-199
    • /
    • 2008
  • There are many successful cases in power interconnection among European and South American countries. However, that is not the case in Northeast Asian countries. Even though there will be a considerable benefit in power interconnection in Northeast Asian countries, there will be some difficulties due to various interest relationship and constraints among countries in Northeast Asia. GTMax(Generation and Transmission Maximization) Program is a very useful tool to analyze competitive electricity market and power interconnection developed by Argonne National Laboratory under the Department of Energy in the USA. This study tried to verify applicability and usefulness by GTMax model to domestic electric power system and power transfer from Russia Far East by power interconnection. When the power by importing from Russia is 2,000MW(around 2% of domestic installed capacity in 2017), there is no impact on domestic electricity market because of small power transfer. The power by importing should be large enough for achieving greater cost reduction by power interconnection. Besides, it would be better to supply power to Kyung-In region directly in reducing overall cost when the power by importing from Russia are sold at low price. In the case of interconnecting Young-Dong region, if it is not possible to upgrade transmission line with power transfer capabilities between Young-Dong and Kyung-In region, then the power by importing from Russia can replace the power produced in Jung-Bu region and the relative benefit of importing power can be reduced.

  • PDF

Frequency Stability Enhancement of Power System using BESS (BESS를 활용한 전력계통 주파수 안정도 향상)

  • Yoo, Seong-Soo;Kwak, Eun-Sup;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.595-606
    • /
    • 2022
  • Korea has the characteristics of traditional power system such as large-scale power generation and large-scale power transmission systems, including 20 GW large-scale power generation complexes in several regions with unit generator capacity exceeding 1.4 GW, 2-3 ultra-high-voltage transmission lines that transport power from large-scale power generation complexes, and 6 ultra-high-voltage transmission lines that transport power from non-metropolitan areas to the metropolitan area. Due to the characteristics of the power system, the penetration level for renewable energy is low, but due to frequency stability issue, some generators are reducing the output of generators. In the future, the issue of maintaining the stability of the power system is expected to emerge as the most important issue in accordance with the policy of expanding renewable energy. When non-inertial inverter-based renewable energy, such as solar and wind power, surges rapidly, the means to improve the power system stability in an independent system is to install a natural inertial resource synchronous condenser (SC) and a virtual inertial resource BESS in the system. In this study, we analyzed the effect of renewable energy on power system stability and the BESS effect to maintain the minimum frequency through a power system simulation. It was confirmed that the BESS effect according to the power generation constraint capacity reached a maximum of 122.81 %.

Analysis of Determinants of Carbon Emissions Considering the Electricity Trade Situation of Connected Countries and the Introduction of the Carbon Emission Trading System in Europe (유럽 내 탄소배출권거래제 도입에 따른 연결계통국가들의 전력교역 상황을 고려한 탄소배출량 결정요인분석)

  • Yoon, Kyungsoo;Hong, Won Jun
    • Environmental and Resource Economics Review
    • /
    • v.31 no.2
    • /
    • pp.165-204
    • /
    • 2022
  • This study organized data from 2000 to 2014 for 20 grid-connected countries in Europe and analyzed the determinants of carbon emissions through the panel GLS method considering the problem of heteroscedasticity and autocorrelation. At the same time, the effect of introducing ETS was considered by dividing the sample period as of 2005 when the European emission trading system was introduced. Carbon emissions from individual countries were used as dependent variables, and proportion of generation by each source, power self-sufficiency ratio of neighboring countries, power production from resource-holding countries, concentration of power sources, total energy consumption per capita in the industrial sector, tax of electricity, net electricity export per capita, and size of national territory per capita. According to the estimation results, the proportion of nuclear power and renewable energy generation, concentration of power sources, and size of the national territory area per capita had a negative (-) effect on carbon emissions both before and after 2005. On the other hand, the proportion of coal power generation, the power supply and demand rate of neighboring countries, the power production of resource-holding countries, and the total energy consumption per capita in the industrial sector were found to have a positive (+) effect on carbon emissions. In addition, the proportion of gas generation had a negative (-) effect on carbon emissions, and tax of electricity were found to have a positive (+) effect. However, all of these were only significant before 2005. It was found that net electricity export per capita had a negative (-) effect on carbon emissions only after 2005. The results of this study suggest macroscopic strategies to reduce carbon emissions to green growth, suggesting mid- to long-term power mix optimization measures considering the electricity trade market and their role.