• Title/Summary/Keyword: Power monitoring

Search Result 2,830, Processing Time 0.036 seconds

Research on rapid source term estimation in nuclear accident emergency decision for pressurized water reactor based on Bayesian network

  • Wu, Guohua;Tong, Jiejuan;Zhang, Liguo;Yuan, Diping;Xiao, Yiqing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2534-2546
    • /
    • 2021
  • Nuclear emergency preparedness and response is an essential part to ensure the safety of nuclear power plant (NPP). Key support technologies of nuclear emergency decision-making usually consist of accident diagnosis, source term estimation, accident consequence assessment, and protective action recommendation. Source term estimation is almost the most difficult part among them. For example, bad communication, incomplete information, as well as complicated accident scenario make it hard to determine the reactor status and estimate the source term timely in the Fukushima accident. Subsequently, it leads to the hard decision on how to take appropriate emergency response actions. Hence, this paper aims to develop a method for rapid source term estimation to support nuclear emergency decision making in pressurized water reactor NPP. The method aims to make our knowledge on NPP provide better support nuclear emergency. Firstly, this paper studies how to build a Bayesian network model for the NPP based on professional knowledge and engineering knowledge. This paper presents a method transforming the PRA model (event trees and fault trees) into a corresponding Bayesian network model. To solve the problem that some physical phenomena which are modeled as pivotal events in level 2 PRA, cannot find sensors associated directly with their occurrence, a weighted assignment approach based on expert assessment is proposed in this paper. Secondly, the monitoring data of NPP are provided to the Bayesian network model, the real-time status of pivotal events and initiating events can be determined based on the junction tree algorithm. Thirdly, since PRA knowledge can link the accident sequences to the possible release categories, the proposed method is capable to find the most likely release category for the candidate accidents scenarios, namely the source term. The probabilities of possible accident sequences and the source term are calculated. Finally, the prototype software is checked against several sets of accident scenario data which are generated by the simulator of AP1000-NPP, including large loss of coolant accident, loss of main feedwater, main steam line break, and steam generator tube rupture. The results show that the proposed method for rapid source term estimation under nuclear emergency decision making is promising.

Smart City Energy Inclusion, Towards Becoming a Better Place to Live

  • Cha, Sang-Ryong
    • World Technopolis Review
    • /
    • v.8 no.1
    • /
    • pp.59-70
    • /
    • 2019
  • Where is a better place to live? In the coming era, this should be more than simply a livable place. It should be an adaptable place that has a flexible system adaptable to any new situation in terms of diversity. Customization and real-time operation are needed in order to realize this technologically. We expect a smart city to have a flexible system that applies technologies of self-monitoring and self-response, thereby being a promising city model towards being a better place to live. Energy demand and supply is a crucial issue concerning our expectations for the flexible system of a smart city because it is indispensable to comfortable living, especially city living. Although it may seem that energy diversification, such as the energy mix of a country, is a matter of overriding concern, the central point is the scale of place to build grids for realizing sustainable urban energy systems. A traditional hard energy path supported by huge centralized energy systems based on fossil and nuclear fuels on a national scale has already faced difficult problems, particularly in terms of energy flexibility/resilience. On the other hand, an alternative soft energy path consisting of small diversified energy systems based on renewable energy sources on a local scale has limitations regarding stability, variability, and supply potential despite the relatively light economic/technological burden that must be assumed to realize it. As another alternative, we can adopt a holonic path incorporating an alternative soft energy path with a traditional hard energy path complimentarily based on load management. This has a high affinity with the flexible system of a smart city. At a system level, the purpose of all of the paths mentioned above is not energy itself but the service it provides. If the expected energy service is fixed, the conclusive factor in choosing a more appropriate system is accessibility to the energy service. Accessibility refers to reliability and affordability; the former encompasses the level of energy self-sufficiency, and the latter encompasses the extent of energy saving. From this point of view, it seems that the small diversified energy systems of a soft energy path have a clear advantage over the huge centralized energy systems of a hard energy path. However, some insuperable limitations still remain, so it is reasonable to consider both energy systems continuing to coexist in a multiplexing energy system employing a holonic path to create and maintain reliable and affordable access to energy services that cover households'/enterprises' basic energy needs. If this is embodied in a smart city concept, this is nothing else but smart energy inclusion. In Japan, following the Fukushima nuclear accident in 2011, a trend towards small diversified energy systems of a soft energy path intensified in order to realize a nuclear-free society. As a result, the Government of Japan proclaimed in its Fifth Strategic Energy Plan that renewable energy must be the main source of power in Japan by 2050. Accordingly, Sony vowed that all the energy it uses would come from renewable sources by 2040. In this situation, it is expected that smart energy inclusion will be achieved by the Japanese version of a smart grid based on the concept of a minimum cost scheme and demand response.

Field Applications of Non-powered Downward Water Circulation System to Improve Reservoir Water Quality (저수지 수질개선을 위한 무동력 하향류 수류순환시스템의 현장적용성)

  • Jang, YeoJu;Lim, HyunMan;Jung, JinHong;Park, JaeRho;Kim, WeonJae
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.2
    • /
    • pp.109-119
    • /
    • 2019
  • Eutrophication has occurred due to the inflow of various water pollutants in many Korean reservoirs with low depth, and algal blooms of surface layer and low oxygenation of deep layer have repeated every year. There are several existing technologies to alleviate the stratification of reservoirs, but it is difficult to apply them in field sites due to the necessity of electric power and low economic efficiency. In this study, a non-powered water circulation system using natural energy of wind and water flow has been developed, and two test-beds constructed in the reservoirs with different conditions and examined its field applicability. Through computational fluid dynamics (CFD) simulation, it has been shown that the water circulation system could induce the downward flow to mitigate the stratification between surface and deep layers, and its influence radius could reach about 30 m. As a result of long-term monitoring of the test-beds, various water quality improvement effects have been observed such as moderation of DO fluctuation by water circulation, reduction of DO supersaturation and prevention of excessive pH rising. In order to improve the applicability of the water circulation system, it is considered necessary to review countermeasures against flood and depth conditions of each reservoir.

Fault Detection Method for Multivariate Process using Mahalanobis Distance and ICA (마할라노비스 거리와 독립성분분석을 이용한 다변량 공정 고장탐지 방법에 관한 연구)

  • Jung, Seunghwan;Kim, Sungshin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • Multivariate processes, such as chemical and mechanical process, power plants are operated in a state where several facilities are complexly connected, the fault of a particular system can also have fatal consequences for the entire process. In addition, since process data is measured in an unstable environment, outlier is likely to be include in the data. Therefore, monitoring technology is essential, which can remove outlier from measured data and detect failures in advance. In this paper, data obtained from dynamic and multivariate process models was used to detect fault in various type of processes. The dynamic process is a simulation of a process with autoregressive property, and the multivariate process is a model that describes a situation when a specific sensor fault. Mahalanobis distance was used to remove outlier contained in the data generated by dynamic process model and multivariate process model, and fault detection was performed using ICA. For comparison, we compared performance with and a conventional single ICA method. The proposed fault detection method improves performance by 0.84%p for bias data and 6.82%p for drift data in the dynamic process. In the case of the multivariate process, the performance was improves by 3.78%p, therefore, the proposed method showed better fault detection performance.

A study on the 3-step classification algorithm for the diagnosis and classification of refrigeration system failures and their types (냉동시스템 고장 진단 및 고장유형 분석을 위한 3단계 분류 알고리즘에 관한 연구)

  • Lee, Kangbae;Park, Sungho;Lee, Hui-Won;Lee, Seung-Jae;Lee, Seung-hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.31-37
    • /
    • 2021
  • As the size of buildings increases due to urbanization due to the development of industry, the need to purify the air and maintain a comfortable indoor environment is also increasing. With the development of monitoring technology for refrigeration systems, it has become possible to manage the amount of electricity consumed in buildings. In particular, refrigeration systems account for about 40% of power consumption in commercial buildings. Therefore, in order to develop the refrigeration system failure diagnosis algorithm in this study, the purpose of this study was to understand the structure of the refrigeration system, collect and analyze data generated during the operation of the refrigeration system, and quickly detect and classify failure situations with various types and severity . In particular, in order to improve the classification accuracy of failure types that are difficult to classify, a three-step diagnosis and classification algorithm was developed and proposed. A model based on SVM and LGBM was presented as a classification model suitable for each stage after a number of experiments and hyper-parameter optimization process. In this study, the characteristics affecting failure were preserved as much as possible, and all failure types, including refrigerant-related failures, which had been difficult in previous studies, were derived with excellent results.

The Effect of Communication Distance and Number of Peripheral on Data Error Rate When Transmitting Medical Data Based on Bluetooth Low Energy (저 전력 블루투스 기반으로 의료데이터 전송 시 통신 거리와 연동 장치의 수가 데이터 손실률에 미치는 영향)

  • Park, Young-Sang;Son, ByeongJin;Son, Jaebum;Lee, Hoyul;Jeong, Yoosoo;Song, Chanho;Jung, Euisung
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.259-267
    • /
    • 2021
  • Recently, the market for personal health care and medical devices based on Bluetooth Low Energy(BLE) has grown rapidly. BLE is being used in various medical data communication devices based on low power consumption and universal compatibility. However, since data errors occurring in the transmission of medical data can lead to medical accidents, it is necessary to analyze the causes of errors and study methods to reduce data error. In this paper, the minimum communication speed to be used in medical devices was set to at least 800 byte/sec based on the wireless electrocardiography regulations of the Ministry of Food and Drug Safety. And the data loss rate was tested when data was transmitted at a speed higher than 800 byte/sec. The factors that cause communication data error were classified, and the relationship between each factor and the data error rate was analyzed through experiments. When there were two or more activated peripherals connected to the central, data error occurred due to channel hopping and bottleneck, and the data error rate increased in proportion to the communication distance and the number of activated peripherals. Through this experiment, when the BLE is used in a medical device that intermittently transmits biosignal data, the risk of a medical accident is predicted to be low if the number of peripherals is 3 or less. But, it was determined that BLE would not be suitable for the development of a biosignal measuring device that must be continuously transmitted in real time, such as an electrocardiogram.

A Numerical Study on the Step 0 Benchmark Test in Task C of DECOVALEX-2023: Simulation for Thermo-Hydro-Mechanical Coupled Behavior by Using OGS-FLAC (DECOVALEX-2023 Task C 내 Step 0 벤치마크 수치해석 연구: OGS-FLAC을 활용한 열-수리-역학 복합거동 수치해석)

  • Kim, Taehyun;Park, Chan-Hee;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.610-622
    • /
    • 2021
  • The DECOVALEX project is one of the representative international cooperative projects to enhance the understanding of the complex Thermo-Hydro-Mechanical-Chemical(THMC) coupled behavior in the high-level radioactive waste disposal system based on the numerical simulation. DECOVALEX-2023 is the current phase consisting of 7 tasks, and Task C aims to model the THM coupled behavior in the disposal system based on the Full-scale Emplacement (FE) experiment at the Mont-Terri underground rock laboratory. This study performs the numerical simulation based on the OGS-FLAC developed for the current study. In the numerical model, we emplaced the heater with constant power horizontally based on the FE experiment and monitored the pressure development, temperature increase, and mechanical deformation at the specific monitoring points. We monitored the capillary pressure as the primary effect inducing the flow in the buffer system, and thermal stress and pressurization were dominant in the surrounding rocks' area. The results will also be compared and validated with the other participating groups and the experimental data further.

ECG Compression and Transmission based on Template Matching (템플릿 매칭 기반의 심전도 압축 전송)

  • Lee, Sang-jin;Kim, Sang-kon;Kim, Tae-kon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • An electrocardiogram(ECG) is a recoding of electrical signals of the heart's cyclic activity and an important body information for diagnosing myocardial rhythm. Large amount of information are generated continuously and a significant period of cumulative signal is required for the purpose of diagnosing a specific disease. Therefore, research on compression including clinically acceptable lossy technique has been developed to reduce the amount of information significantly. Recently, wearable smart heart monitoring devices that can transmit electrocardiogram(ECG) are being developed. The use of electrocardiogram, an important personal information for healthcare service, is rapidly increasing. However, devices generally have limited capability and power consumption for user convenience, and it is often difficult to apply the existing compression method directly. It is essential to develop techniques that can process and transmit a large volume of signals in limited resources. A method for compressing and transmitting the ECG signals efficiently by using the cumulative average (template) of the unit waveform is proposed in the paper. The ECG is coded lovelessly using template matching. It is analyzed that the proposed method is superior to the existing compression methods at high compression ratio, and its complexity is not relatively high. And it is also possible to apply compression methods to template matching values.

Added Value of Chemical Exchange-Dependent Saturation Transfer MRI for the Diagnosis of Dementia

  • Jang-Hoon Oh;Bo Guem Choi;Hak Young Rhee;Jin San Lee;Kyung Mi Lee;Soonchan Park;Ah Rang Cho;Chang-Woo Ryu;Key Chung Park;Eui Jong Kim;Geon-Ho Jahng
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.770-781
    • /
    • 2021
  • Objective: Chemical exchange-dependent saturation transfer (CEST) MRI is sensitive for detecting solid-like proteins and may detect changes in the levels of mobile proteins and peptides in tissues. The objective of this study was to evaluate the characteristics of chemical exchange proton pools using the CEST MRI technique in patients with dementia. Materials and Methods: Our institutional review board approved this cross-sectional prospective study and informed consent was obtained from all participants. This study included 41 subjects (19 with dementia and 22 without dementia). Complete CEST data of the brain were obtained using a three-dimensional gradient and spin-echo sequence to map CEST indices, such as amide, amine, hydroxyl, and magnetization transfer ratio asymmetry (MTRasym) values, using six-pool Lorentzian fitting. Statistical analyses of CEST indices were performed to evaluate group comparisons, their correlations with gray matter volume (GMV) and Mini-Mental State Examination (MMSE) scores, and receiver operating characteristic (ROC) curves. Results: Amine signals (0.029 for non-dementia, 0.046 for dementia, p = 0.011 at hippocampus) and MTRasym values at 3 ppm (0.748 for non-dementia, 1.138 for dementia, p = 0.022 at hippocampus), and 3.5 ppm (0.463 for non-dementia, 0.875 for dementia, p = 0.029 at hippocampus) were significantly higher in the dementia group than in the non-dementia group. Most CEST indices were not significantly correlated with GMV; however, except amide, most indices were significantly correlated with the MMSE scores. The classification power of most CEST indices was lower than that of GMV but adding one of the CEST indices in GMV improved the classification between the subject groups. The largest improvement was seen in the MTRasym values at 2 ppm in the anterior cingulate (area under the ROC curve = 0.981), with a sensitivity of 100 and a specificity of 90.91. Conclusion: CEST MRI potentially allows noninvasive image alterations in the Alzheimer's disease brain without injecting isotopes for monitoring different disease states and may provide a new imaging biomarker in the future.

Improvement of Face Recognition Algorithm for Residential Area Surveillance System Based on Graph Convolution Network (그래프 컨벌루션 네트워크 기반 주거지역 감시시스템의 얼굴인식 알고리즘 개선)

  • Tan Heyi;Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.1-15
    • /
    • 2024
  • The construction of smart communities is a new method and important measure to ensure the security of residential areas. In order to solve the problem of low accuracy in face recognition caused by distorting facial features due to monitoring camera angles and other external factors, this paper proposes the following optimization strategies in designing a face recognition network: firstly, a global graph convolution module is designed to encode facial features as graph nodes, and a multi-scale feature enhancement residual module is designed to extract facial keypoint features in conjunction with the global graph convolution module. Secondly, after obtaining facial keypoints, they are constructed as a directed graph structure, and graph attention mechanisms are used to enhance the representation power of graph features. Finally, tensor computations are performed on the graph features of two faces, and the aggregated features are extracted and discriminated by a fully connected layer to determine whether the individuals' identities are the same. Through various experimental tests, the network designed in this paper achieves an AUC index of 85.65% for facial keypoint localization on the 300W public dataset and 88.92% on a self-built dataset. In terms of face recognition accuracy, the proposed network achieves an accuracy of 83.41% on the IBUG public dataset and 96.74% on a self-built dataset. Experimental results demonstrate that the network designed in this paper exhibits high detection and recognition accuracy for faces in surveillance videos.