• 제목/요약/키워드: Power grid

검색결과 2,996건 처리시간 0.026초

새로운 DFT 비교기를 이용한 자동 다전원 동기절체 스위치에 관한 연구 (A Study on Automatic Multi-Power Synchronous Transfer Switch using New DFT Comparator)

  • 곽아림;박성미;손경종;박성준;김종철
    • 한국산업융합학회 논문집
    • /
    • 제25권3호
    • /
    • pp.423-431
    • /
    • 2022
  • The UPS(Uninterruptible Power Supply) system operates in the battery charging mode when the grid is normal, and in the UPS mode, which is the battery discharge mode when a grid error occurs. Since the UPS must supply the same voltage as the grid to the load within 4 [ms] in case of a grid error, the switching time and power recovery time should be short when controlling the output voltage and current of the UPS, and the power failure detection time is also important. The power outage detection algorithm using DFT(Discrete Fourier Transform) proposed in this paper compares the grid voltage waveform with the voltage waveform including the 9th harmonic generated through DFT using Schmitt trigger to detect power outage faster than the existing power outage monitoring algorithm. There are advantages. Therefore, it is possible to supply instant and stable power when switching modes in the UPS system. The multi-power-applied UPS system proposed in this paper uses DFT, which is faster than the conventional blackout monitoring algorithm in detecting power failure, to provide stable power to the load in a shorter time than the existing power outage monitoring algorithm when a system error occurs. The detection method was applied. The changeover time of mode switching was set to less than 4 [ms], which is 1/4 of the system cycle, in accordance with KSC 4310 regulation, which was established by the Industrial Standards Council on the regulation of uninterruptible power supply. A 10 [kW] UPS system in which commercial voltage, vehicle generator, and auxiliary diesel generator can be connected to each of the proposed transfer devices was constructed and the feasibility was verified by conducting an experiment.

Performance Prediction & Analysis of MGT Co-generation System

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Kyu;Kim, Jae-Hoon
    • 신재생에너지
    • /
    • 제2권3호
    • /
    • pp.15-22
    • /
    • 2006
  • As the distributed generation becomes more reliable and economically feasible, it is expected that a higher application of the distributed generation units would be interconnected to the existing grids. This new market penetration using the distributed generation technology is linked to a large number of factors like economics and performance, safety and reliability, market regulations, environmental issues, or grid connection standards. KEPCO, a government company in Korea, has performed the project to identify and evaluate the performance of Micro Gas Turbine(MGT) technologies focused on 30, 60kW-class grid-connected optimization and combined Heat & Power performance. This paper describes the results for the mechanical, electrical, and environmental tests of MGT on actual grid-connection under Korean regulations. As one of the achievements, the simulation model of Exhaust-gas Absorption Chiller was developed, so that it will be able to analyze or propose new distributed generation system using MGT. In addition, KEPCO carried out the field testing of the MGT Cogeneration system at the R&D Center Building, KEPCO. The field test was conducted in order to respond to a wide variety of needs for heat recovery and utilization. The suggested method and experience for the evaluation of the distributed generation will be used for the introduction of other distributed generation technologies into the grid in the future.

  • PDF

Planning of HVDC System Applied to Korea Electric Power Grid

  • Choi, DongHee;Lee, Soo Hyoung;Son, Gum Tae;Park, Jung-Wook;Baek, Seung-Mook
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.105-113
    • /
    • 2018
  • This paper proposes pre-analysis on planning of high-voltage direct current (HVDC) transmission system applied to Korea electric power grid. HVDC transmission system for interface lines has been considered as alternative solution for high-voltage AC transmission line in South Korea since constructing new high-voltage AC transmission lines is challenging due to political, environmental and social acceptance problems. However, the installation of HVDC transmission system as interface line in AC grid must be examined carefully. Thus, this paper suggests three scenarios to examine the influences of the installation of HVDC transmission system in AC grid. The power flow and contingency analyses are carried out for the proposed scenarios. Power reserves in metro area are also evaluated. And then the transient stability analysis focusing on special protection scheme (SPS) operations is analyzed when critical lines, which are HVDC lines or high voltage AC lines, are tripped. The latest generic model of HVDC system is considered for evaluating the impacts of the SPS operations for introducing HVDC system in the AC grid. The analyses of proposed scenarios are evaluated by electromechanical simulation.

Comparison and Study of Active and Hybrid Power Filters for Compensation of Grid Harmonics

  • Gutierrez, Bryan;Kwak, Sang-Shin
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1541-1550
    • /
    • 2016
  • This paper presents a theoretical analysis and comparisons of active power filter (APF) and hybrid power filter (HPF) systems, given terminal constraints of harmonic compensations in nonlinear loads. Despite numerous publications for the two types of filters, the features and differences between them have not been clearly explained. This paper presents a detailed analysis of the operations of a HPF inverter along with those of passive power filters (PPFs). It also includes their effects on the power factor at the grid. In addition, a theoretical analysis and a systematic comparison between the APF and HPF systems are addressed based on system parameters such as the source voltage, output power, reactive component size, and power factor at the grid terminals. The converter kVA ratings and dc-link voltage requirements for both topologies are considered in the presented comparisons

Smart Phone을 통한 Smart Grid 네트워크 접속에서 취약성 (Analysis of Smart Grid Network Vulnerability Using Smart Phone)

  • 이재현;박대우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 추계학술대회
    • /
    • pp.240-243
    • /
    • 2010
  • Smart Phone 보급이 확산되면서 인터넷 PC를 대체하는 모바일 통신으로 활용되고 있다. Smart Phone은 기존의 전력망과 IT가 융합된 Smart Grid에도서 업무용으로 사용되고 있다. 따라서 Smart Phone을 통한 Smart Grid 네트워크 접속에서 접속과 제어에 대한 보안 취약점과 Smart Grid 네트워크에 대한 취약점에 대한 연구가 필요하다. 본 논문에서는 Smart Phone을 사용하여 Smart Grid 네트워크를 통한 전력망 시스템에 접근할 때의 접속 취약점에 대한 연구를 한다. 또한 Smart Phone을 사용하여 Smart Grid 네트워크에 접속 한 후에 전력정보, 통제정보, 개인정보 등에 대한 접근 권한을 탈취 가능성에 취약성을 분석하여 발생하는 문제점과 대해 연구한다. 그리고 Smart Phone을 통한 Smart Grid 네트워크 보안 취약점에 대한 보안 강화를 위한 연구 방향을 제시하고자 한다.

  • PDF

선형계획법에 의한 계통연계형 마이크로그리드의 최적 운용에 관한 연구 (Linear Programming based Optimal Scheduling for Grid-connected Microgrid)

  • 박재세
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1622-1626
    • /
    • 2011
  • Recently, interests on microgrids have been growing as clean power systems. Microgrids include small scaled distributed generation such as wind and solar power as well as diesel generators as main power sources. To operate a microgrid effectively, optimal scheduling for the microgrid is important. Especially, in the grid-connected mode, power trades between the microgrid and the power grid should be considered in optimal scheduling. In this paper, mathematic models for optimal operation of a microgrid were established based on the linear programming. In particular, the shiftable load was considered in the models to optimize it in microgrid operation. To show feasibility of the proposed models, they were applied to optimal microgrid operation and the results were discussed.

풍력발전단지와 연계된 변전소의 모선전압 분석 (Bus Voltage Analysis of Substation Connected to the Wind Generation Farm)

  • 김영환;현길주;고석범;나경윤;양익준;김세호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.236-238
    • /
    • 2004
  • In recent years wind turbine technology has undergone the rapid development in response to the demands for increased use of renewable sources of energy. Using wind turbines for production of electrical energy requires reliable operation. The increased share of wind power in electrical system makes it necessary to have grid-friendly interfaces between the wind turbines and the grid in order to maintain power quality. Increasingly wind turbines are being connected into electricity distribution system. The grid-connected wind power stations have many impacts on power systems such as voltage variations, harmonics. The paper investigates the influences of grid-connected wind power generation system on substation bus voltage.

  • PDF

계통연계형 태양광발전 시스템의 주파수 변동에 의한 새로운 고립운전 검출기법 (Novel Islanding Detection Method using Frequency Drift for Grid-connected PV System)

  • 은석준;김흥근;최종우;이동춘
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권6호
    • /
    • pp.294-302
    • /
    • 2005
  • PV system's islanding occurs when the uitilty grid is removed but local sources continue to operate and provide power to local loads. Islanding is one of the serious problems in an electric power system connected with dispersed power sources. Also, this can present safety hazards and the possibility of damage to other electric equipments. If the real and reactive power of RLC load and PV system are closely matched, islanding detection by passive methods becomes difficult. This paper shows the simulation and comparision for the previous active methods and novel islanding detection method using frequency drift is proposed for grid-connected PV system.

Comprehensive evaluation of cleaner production in thermal power plants based on an improved least squares support vector machine model

  • Ye, Minquan;Sun, Jingyi;Huang, Shenhai
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.559-565
    • /
    • 2019
  • In order to alleviate the environmental pressure caused by production process of thermal power plants, the application of cleaner production is imperative. To estimate the implementation effects of cleaner production in thermal plants and optimize the strategy duly, it is of great significance to take a comprehensive evaluation for sustainable development. In this paper, a hybrid model that integrated the analytic hierarchy process (AHP) with least squares support vector machine (LSSVM) algorithm optimized by grid search (GS) algorithm is proposed. Based on the establishment of the evaluation index system, AHP is employed to pre-process the data and GS is introduced to optimize the parameters in LSSVM, which can avoid the randomness and inaccuracy of parameters' setting. The results demonstrate that the combined model is able to be employed in the comprehensive evaluation of the cleaner production in the thermal power plants.

Characteristics of High Power Semiconductor Device Losses in 5MW class PMSG MV Wind Turbines

  • Kwon, Gookmin;Lee, Kihyun;Suh, Yongsug
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.367-368
    • /
    • 2014
  • This paper investigates characteristics of high power semiconductor device losses in 5MW-class Permanent Magnet Synchronous Generator (PMSG) Medium Voltage (MV) wind turbines. High power semiconductor device of press-pack type IGCT of 6.5kV is considered in this paper. Analysis is performed based on neutral point clamped (NPC) 3-level back-to-back type voltage source converter (VSC) supplied from grid voltage of 4160V. This paper describes total loss distribution at worst case under inverter and rectifier operating mode for the power semiconductor switches. The loss analysis is confirmed through PLECS simulations. In addition, the loss factors due to di/dt snubber and ac input filter are presented. The investigation result shows that IGCT type semiconductor devices generate the total efficiency of 97.74% under the rated condition.

  • PDF