• 제목/요약/키워드: Power generation optimization

검색결과 323건 처리시간 0.029초

경제급전문제의 통합운영에 관한 경제적 이득 분석 (Economic Profit Analysis for Centralized Operation of Economic Load Dispatch Problem)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.181-188
    • /
    • 2016
  • 본 논문은 경제급전 최적화 문제에 개별 발전회사별로 독립적으로 경제급전을 수행하는 방법에 비해 중앙에서 통합하여 경제급전 최적화를 수행하는 경우가 보다 경제적임을 보였다. 이 경우에 적용된 알고리즘으로 밸브지점으로 발전량을 조절하는 균형방법을 수행한 후 발전량을 감소시킬 때의 비용 감소분과 증가시킬 때의 비용 증가분 차이로 발전량을 상호 교환하는 방법으로 최적화를 수행하였다. 10대, 13대과 40대-발전기를 독립적으로 운영하는 경우와 통합된 63대-발전기를 경제급전하는 경우를 비교한 결과 통합운영 방법이 독립적 경제급전에 비해 발전비용을 획기적으로 감소시켜 경제적인 이익을 극대화 시킬 수 있음을 보였다.

액화천연가스 냉열을 이용한 단일팽창과 이단팽창 사이의 비교 연구 (Comparative Study between Single-stage and Two-stage Expansion Using LNG Cold Heat)

  • 노상균
    • 한국수소및신에너지학회논문집
    • /
    • 제30권2호
    • /
    • pp.188-192
    • /
    • 2019
  • Comparative studies between single- and two-stage expansion process using LNG cold heat have been performed for a closed Rankine power generation cycle. PRO/II with PROVISION release 10.0 from Schneider Electric Company was used, and the Peng-Robinson equation of state model with Twu's alpha function was selected for the modeling and optimization of the power generation cycle using LNG cold heat. In two-stage power generation cycle, 6.7% more power was obtained compared to that of single-stage power generation cycle through the optimization works.

Generation Scheduling with Large-Scale Wind Farms using Grey Wolf Optimization

  • Saravanan, R.;Subramanian, S.;Dharmalingam, V.;Ganesan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1348-1356
    • /
    • 2017
  • Integration of wind generators with the conventional power plants will raise operational challenges to the electric power utilities due to the uncertainty of wind availability. Thus, the Generation Scheduling (GS) among the online generating units has become crucial. This process can be formulated mathematically as an optimization problem. The GS problem of wind integrated power system is inherently complex because the formulation involves non-linear operational characteristics of generating units, system and operational constraints. As the robust tool is viable to address the chosen problem, the modern bio-inspired algorithm namely, Grey Wolf Optimization (GWO) algorithm is chosen as the main optimization tool. The intended algorithm is implemented on the standard test systems and the attained numerical results are compared with the earlier reports. The comparison clearly indicates the intended tool is robust and a promising alternative for solving GS problems.

Integrated Optimization of Combined Generation and Transmission Expansion Planning Considering Bus Voltage Limits

  • Kim, Hyoungtae;Kim, Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1202-1209
    • /
    • 2014
  • A novel integrated optimization method is proposed to combine both generation and transmission line expansion problem considering bus voltage limit. Most of the existing researches on the combined generation and transmission expansion planning cannot consider bus voltages and reactive power flow limits because they are mostly based on the DC power flow model. In this paper the AC power flow model and nonlinear constraints related to reactive power are simplified and modified to improve the computation time and convergence. The proposed method has been successfully applied to Garver's six-bus system which is one of the most frequently used small scale sample systems to verify the transmission expansion method.

GAME MODEL AND ITS SOLVING METHOD FOR OPTIMAL SCALE OF POWER PLANTS ENTERING GENERATION POWER MARKET

  • Tan, Zhongfu;Chen, Guangjuan;Li, Xiaojun
    • Journal of applied mathematics & informatics
    • /
    • 제26권1_2호
    • /
    • pp.337-347
    • /
    • 2008
  • Based on social welfare maximum theory, the optimal scale of power plants entering generation power market being is researched. A static non-cooperative game model for short-term optimization of power plants with different cost is presented. And the equilibrium solutions and the total social welfare are obtained. According to principle of maximum social welfare selection, the optimization model is solved, optimal number of power plants entering the market is determined. The optimization results can not only increase the customer surplus and improve power production efficiency, but also sustain normal profits of power plants and scale economy of power production, and the waste of resource can also be avoided. At last, case results show that the proposed model is efficient.

  • PDF

다양한 구성의 가스터빈 복합화력발전소에 대한 열역학적 해석과 경제적 최적화 연구 (Thermodynamic analysis and economical optimization on various configuration of Gas Turbine Combined Cycle Power Plants)

  • 김승진;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.225-228
    • /
    • 2012
  • Thermodynamic and economic analysis on various type of gas turbine combined cycle power plants was presented to build up the criteria for optimization of power plants. The efficiency considered about energy level difference between electricity and heat was introduced. The efficiency on power and heat generation of power plants whose have different purpose was estimated and power generation costs on various type of combined heat and power plants : fired/unfired, condensing/non-condensing mode, single/double pressure HRSG.

  • PDF

Integrated Generation and Transmission Expansion Planning Using Generalized Bender’s Decomposition Method

  • Kim, Hyoungtae;Lee, Sungwoo;Kim, Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2228-2239
    • /
    • 2015
  • A novel integrated optimization method based on the Generalized Bender’s Decomposition (GBD) is proposed to combine both generation and transmission expansion problems. Most of existing researches on the integrated expansion planning based on the GBD theory incorporate DC power flow model to guarantee the convergence and improve the computation time. Inherently the GBD algorithm based on DC power flow model cannot consider variables and constraints related bus voltages and reactive power. In this paper, an integrated optimization method using the GBD algorithm based on a linearized AC power flow model is proposed to resolve aforementioned drawback. The proposed method has been successfully applied to Garver’s six-bus system and the IEEE 30-bus system which are frequently used power systems for transmission expansion planning studies.

분산전원계통을 위한 3상 최적조류계산 프로그램 개발 (Development of Three Phase Optimal Power Flow for Distributed Generation Systems)

  • 송화창;조성구
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.882-889
    • /
    • 2010
  • This paper presents a method of finding the optimal operating point minimizing a given objective function with 3 phase power flow equations and operational constraints, called 3 phase optimal power flow (3POPF). 3 phase optimal power flow can provide operation and control strategies for the distribution systems with distributed generation assets, which might be frequently in unbalanced conditions assuming that high penetration rate of renewable energy sources in the systems. As the solution technique for 3POPF, this paper adopts a simulation-based method of particle swarm optimization (PSO). In the PSO based 3POPF, a utility function needs to be defined for evaluation of the degree in operational improvement of each particle's current position. To evaluate the utility function, in this paper, NR-based 3 phase power flow algorithm was developed which can deal with looped distributed generation systems. In this paper, illustrative examples with a 5-bus and a modified IEEE 37-bus test systems are given.

가정용 연료전지 시스템의 전기 효율 향상을 위한 연료/공기 이용률 운전 최적화 (Operational Optimization of Anodic/cathodic Utilization for a Residential Power Generation System to Improve System Power Efficiency)

  • 석동훈;김민진;손영준;이진호
    • 한국수소및신에너지학회논문집
    • /
    • 제24권5호
    • /
    • pp.373-385
    • /
    • 2013
  • To obtain higher power efficiency of Residential Power Generation system(RPG), it is needed to operate system on optimized stoichiometric ratios of fuel and air. Stoichiometric ratios of fuel/air are closely related to efficiency of stack, reformer and power consumption of Balance Of Plant(BOP). In this paper, optimizing stoichiometric ratios of fuel/air are conducted through systematic experiments and modeling. Based on fundamental principles and experimental data, constraints are chosen. By implementing these optimum values of stoichiometric ratios, power efficiency of the system could be maximized.