• Title/Summary/Keyword: Power flow analysis (PFA)

Search Result 33, Processing Time 0.03 seconds

Research on Frequency Average Analysis of vibrational Power Flow Analysis (진동파워흐름해석의 주파수 평균해석에 대한 연구)

  • Lee, Jea-Min;Hong, Suk-Yoon;Park, Young-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.971-977
    • /
    • 2005
  • Power Flow Analysis (PFA) is developed for the effective predictions of frequency-averaged vibrational response in medium-to-high frequency ranges. In PFA, the power coefficients of semi-infinite structure and for-field energy density are used to predict the vibrational responses of structures. Generally, at high frequencies, PFA can predict narrow-band frequency-averaged vibrational responses of built-up structures. However, in low- to medium frequency ranges, the dynamic responses obtained by PFA represent broad-band frequency-averaged vibrational energy densities. For the prediction of vibrational response variance in Power Flow Finite Element Method (PFFEM), the variances of input power and joint element matrix describing structural coupling relationship are derived. Finally, for the validity of developed formulation, numerical examples for two co-planer plates are performed and the vibrational response variance of the structure are compared with the results of classical and PFFEM solutions.

  • PDF

HYBRID POWER FLOW ANALYSIS USING SEA PARAMETERS

  • Park, Y.H.;Hong, S.Y.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.423-439
    • /
    • 2006
  • This paper proposes a hybrid analytic method for the prediction of vibrational and acoustic responses of reverberant system in the medium-to-high frequency ranges by using the PFA(Power Flow Analysis) algorithm and SEA(Statistical Energy Analysis) coupling concepts. The main part of this method is the application of the coupling loss factor(CLF) of SEA to the boundary condition of PFA in reverberant system. The hybrid method developed shows much more promising results than the conventional SEA and equivalent results to the classical PFA for various damping loss factors in a wide range of frequencies. Additionally, this paper presents applied results of hybrid power flow finite element method(hybrid PFFEM) by formulating the new joint element matrix with CLF to analyze the vibrational responses of built-up structures. Finally, the analytic results of coupled plate structures and an automobile-shaped structure using hybrid PFFEM were predicted successively.

Hybrid Type Vibration Power Flow Analysis Method Using SEA Parameters

  • Park, Young-Ho;Hong, Suk-Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4E
    • /
    • pp.164-169
    • /
    • 2002
  • This paper proposes a hybrid method for vibration analysis in the medium to high frequency ranges using Power Flow Analysis (PFA) algorithm and Statistical Energy Analysis (SEA) coupling concepts. The main part of the developed method is the application of coupling loss factor (CLF) suggested in SEA to the power transmission, reflection coefficients in PI' A boundary conditions. The developed hybrid method shows very promising results with regard to the applications for the various damping loss factors in wide frequency ranges. And also this paper presents the applied results of Power Flow Finite Element Method (PFFEM) by forming the new joint element matrix with CLF to analyze the various plate structures in shape. The analytical results of automobile, complex plate structures show good agreement with those of PFFEM using the PFA coefficients.

Hybrid Type Vibration Power Flow Analysis Method Using SEA Parameters

  • 박영호;홍석윤
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.164-164
    • /
    • 2002
  • This paper proposes a hybrid method for vibration analysis in the medium to high frequency ranges using Power Flow Analysis (PFA) algorithm and Statistical Energy Analysis (SEA) coupling concepts. The main part of the developed method is the application of coupling loss factor (CLF) suggested in SEA to the power transmission, reflection coefficients in PI' A boundary conditions. The developed hybrid method shows very promising results with regard to the applications for the various damping loss factors in wide frequency ranges. And also this paper presents the applied results of Power Flow Finite Element Method (PFFEM) by forming the new joint element matrix with CLF to analyze the various plate structures in shape. The analytical results of automobile, complex plate structures show good agreement with those of PFFEM using the PFA coefficients.

Power Flow Analysis of Vibration of a Plate Covered with a Damping Sheet (제진 평판 진동에 대한 파워흐름해석)

  • Lee, Jin-Young;Kil, Hyun-Gwon;Song, Jee-Hun;Hong, Suk-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.530-536
    • /
    • 2009
  • In this paper, the power flow analysis(PFA) has been used to analyze the vibration of a plate covered with a damping sheet. Experiments have been performed to measure the loss factor and frequency response functions of the plate covered with the damping sheet. The data for the loss factor has been used as the input data to predict the vibration of the coupled plates with PFA. The comparison between the experimental results and the predicted PFA results for the frequency response functions has been performed. It showed that PFA can be effectively used to predict structural vibration of a plate covered with a damping sheet in medium-to-high frequency range.

Transient Power Flow Analysis of Beam and Plate (과도 입력파워에 대한 보와 평판의 파워흐름해석)

  • Hwang, Dae-Woong;Seo, Seong-Hoon;Kwon, Hyun-Wung;Hong, Suk-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.624-631
    • /
    • 2007
  • PFA (power flow analysis) has been recognized as a useful method in vibration analysis of medium-to-high frequency ranges. Until now, PFA method has been developed for steady-state vibration problems. In this paper, PFA method has been expanded to transient problem. New energy governing equations are derived considering time dependent terms in beam and plate. Analytic solutions of those equations are found in simple beam and plate, and are verified by comparing with modal solutions.

Development of Vibration and Noise Prediction Softwares for Vehicle Structures Using Power Flow Analysis (파워흐름해석법을 이용한 자동차 구조물의 진동/소음 예측 프로그램 개발)

  • Lee, Ho-Won;Hong, Suk-Yoon;Seo, Sung-Hoon;Kwon, Hyun-Wung;Park, Young-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.391-397
    • /
    • 2005
  • Power Flow Analysis(PFA) is used as the promising tools for the vibration and noise predictions of complex structures in medium-to-high frequency ranges. When the noise and vibration of a complex structure are analyzed, Power Flow finite Element Method combining PFA with FEM is efficient in vibration analysis, and Power Flow Boundary element Method combining PFA with BEM is usful in noise analysis. PFFEM software, PFADS has been developed for the vibration analysis of coupled system structures. Also, NASPFA, the noise analysis software based on PFBEM, has been developed. Through the several upgrades, the current version PFADS R3 and NASPFA R2 are used for the vibration and noise analysis of system structures in medium-to-high frequency ranges. In this paper, the structure and function of each software are explained, and the vibration and noise levels of vehicle structures predicted by each software are shown.

  • PDF

Experimental Study On Power Flow Analysis of Vibration of Various Coupled Plates (다양한 연성 평판 진동에 대한 파워흐름해석법의 실험적 연구)

  • Hwang, S.G.;Kil, H.G.;Lee, G.H.;Lee, J.Y.;Hong, S.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.901-904
    • /
    • 2007
  • The power flow analysis (PFA) can be effectively used to predict structural vibration in medium-to-high frequency ranges. In this paper, vibration experiments have been performed to observe the analytical characteristics of the power flow analysis of the vibration of various coupled plates. Those plates include two plates coupled with angles of $90^{\circ}$\;and\;30^{\circ}$, respectively. In the experiment, the loss factor and the input mobility at a source point on each coupled plate have been measured. The data for the loss factors have been used as the input data to predict the vibration of the coupled plates with PFA. The frequency response functions have been measured over the surface of the coupled plates. The comparison between the experimental results and the predicted PFA results for the frequency response functions has been performed.

  • PDF

Experimental Study On Power Flow Analysis of Vibration of Simple Structures (단순구조물 진동에 대한 파워흐름해석법의 실험적 연구)

  • Lee, B.C.;Kil, H.G.;Lee, Y.H.;Lee, H.H.;Hong, S.Y
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.517-520
    • /
    • 2004
  • The power flow analysis(PFA) can be effectively used to predict structural vibration in medium-to-high frequency ranges. In this paper, vibration experiment has been performed to observe the analytical characteristics of the power flow analysis of the vibration of a plate. In the experiment, the loss factor of the plate and the input mobility at a source point have been measured. The data for the loss factor has been used as the input data to predict the vibration of the plate with PFA. The frequency response functions have been measured over the surface of the plate. The comparison between the experimental results and the predicted results for the frequency response functions showed that PFA can be an effective tool to predict structural vibration in medium-to-high frequency ranges.

  • PDF

Vibration Power Flow Analysis of Submarine-shaped Structures using Developed Software

  • Seo, Seong-Hoon;Hong, Suk-Yoon
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.2
    • /
    • pp.1-11
    • /
    • 2002
  • For the analysis of vibrational energy density and intensity of partitioned complex system structures in medium-to-high frequency ranges, A software based on the Power Flow Analysis(PFA) has been developed for the plate elements. The flexural, longitudinal and shear waves in plates are formulated and the joint element equations for multi-coupled plates are fully developed. Also, the wave transmission approach has been introduced to cover the energy transmission and reflection at the joint plate elements. To confirm the validity of the developed PFA software, the submarine-shaped complex structures are used for the analysis of vibration intensity and energy density.