• 제목/요약/키워드: Power equipment

검색결과 4,021건 처리시간 0.039초

원자력발전소 안전등급 대형유도전동기의 기기검증 (Equipment Qualification of a Safety-related Large Induction Motor for Nuclear Power Plants)

  • 이형우;고우식;류정현;박노길
    • 한국정밀공학회지
    • /
    • 제24권6호
    • /
    • pp.72-77
    • /
    • 2007
  • A safety-related equipment for the nuclear power plant should be needed an equipment qualification. In this paper, the approach, methods, philosophies, and procedures for qualifying the large squirrel-cage induction electric pump motors for use in ULCHIN 5, 6 Nuclear Power Plants were presented. The method of qualification is a combination of experimental test and analytic method, which is composed of radiation exposure test, seismic simulation test, thermal aging analysis for non-metallic materials, and seismic analysis. The results showed that the motor performed its safety function with no failure mechanism under postulated service conditions.

도시철도 전력설비 감시진단을 위한 특성 분석 (The Characteristics Analysis for Monitoring and diagnosing Electrical Equipments of the Urban Railway)

  • 이지철;이동준;어수영;유기선;임형길;정호성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.230-234
    • /
    • 2008
  • Urban Railway was used importantly with transport for several decades. This transportation facilities used electricity. When the breakdown occurs, social, the economic loss is enormous. In addition to, the power equipment was ageing. We need preventive diagnostic monitoring system in order to prevent breakdown of power equipment. In this paper, we investigates characteristic and breakdown type of the Urban Railway power equipment. Through the this research, we can contribute in the operation which power equipment is efficient of the Urban Railway.

  • PDF

A Simple Structure of Zero-Voltage Switching (ZVS) and Zero-Current Switching (ZCS) Buck Converter with Coupled Inductor

  • Wei, Xinxin;Luo, Ciyong;Nan, Hang;Wang, Yinghao
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1480-1488
    • /
    • 2015
  • In this paper, a revolutionary buck converter is proposed with soft-switching technology, which is realized by a coupled inductor. Both zero-voltage switching (ZVS) of main switch and zero-current switching (ZCS) of freewheeling diode are achieved at turn on and turn off without using any auxiliary circuits by the resonance between the parasitic capacitor and the coupled inductor. Furthermore, the peak voltages of the main switch and the peak current of the freewheeling diode are significantly reduced by the coupled inductor. As a result, the proposed converter has the advantages of simple circuit, convenient control, low consumption and so on. The detailed operation principles and steady-state analysis of the proposed ZVS-ZCS buck converter are presented, and detailed power loss analysis and some simulation results are also included. Finally, experimental results based on a 200-W prototype are provided to verify the theory and design of the proposed converter.

변전설비 용량기준의 합리화 방안 및 대책에 관한 연구 (A Study on the Reasonable Design Standard and Countermeasures of the Demand Factor)

  • 유현재;하복남;남궁도;박상만;조남훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.902-904
    • /
    • 1996
  • In this paper, we proposed the reasonable design standard and countermeasures of Demand Factor for large office buildings, that was made by the statistical way considering actual conditions, such as investicated electric equipment capacity, electric power consumption, etc. So as to save electric equipment investment, the decrease of power loss, the improvement of facilities utilization and the decrease of electric rates, we can be contributed by the application of the design standard. The result of saving effect is showed to confirm the practical use of the proposed Demand Factor, and also, it is believed that this proposed Demand Factor will be useful in electric equipment operation and planning.

  • PDF

Power Line Communication을 이용한 반도체 Plasma 장비 전력시스템 원격제어 (The Electric Power System Remote Control Of Semiconductor Plasma Manufacturing Equipment Using Power Line Communication)

  • 이내일;김진환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1678-1679
    • /
    • 2007
  • This paper is the electric power system remote control of semiconductor plasma manufacturing equipment using PLC(power line communication). PLC is useful for economical data link but various problems and limitations are caused in using power lines for communications channel Develop of Semiconductor plasma manufactur ing equipment and remote automation technologies of tool develops day after day and standards. Also, Remote electric power control and device module control by GUIRCS(Graphic User Interface Remote Control System) of tool are monitoring in real time.

  • PDF

OA기기의 대기전력 측정을 통한 절전 평가 제안 (The Recommendation on Power Saving through the Measuring of the Standby Power of OA Equipments)

  • 김만건;최돈묵
    • 대한안전경영과학회지
    • /
    • 제15권1호
    • /
    • pp.161-167
    • /
    • 2013
  • The purpose of this study was to assess power loss in the computer and office automation equipment and identified a way to save power consumptions through field measurement. In this study, the meaning of standby power was to consume power while waiting for the use of any electronic equipment. This standby consumption was about 11% of total power consumption even though we did not seriously realize it. Therefore, it was very important to measure accurate power consumption at the standby status of electronic equipment. In addition, it also helped to reduce potential risks of electricity associated disasters. This study proposed the way to reduce power losses through automatic turn off switches for power outlets and switches. Finally, this study can evaluate power consumption patterns that can reduce power consumptions and potential risks of power related disasters. This also can achieve the goals of sustainability that can reduce environmental impacts by lowering energy consumptions and greenhouse gas emissions.

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part II: Numerical simulations

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.3085-3099
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to numerically assess the damage and vibrations of NPP buildings subjected to aircrafts crash. In Part I of present paper, two shots of reduce-scaled model test of aircraft impact on NPP were conducted based on the large rocket sled loading test platform. In the present part, the numerical simulations of both scaled and prototype aircraft impact on NPP buildings are further performed by adopting the commercial program LS-DYNA. Firstly, the refined finite element (FE) models of both scaled aircraft and NPP models in Part I are established, and the model impact test is numerically simulated. The validities of the adopted numerical algorithm, constitutive model and the corresponding parameters are verified based on the experimental NPP model damages and accelerations. Then, the refined simulations of prototype A380 aircraft impact on a hypothetical NPP building are further carried out. It indicates that the NPP building can totally withstand the impact of A380 at a velocity of 150 m/s, while the accompanied intensive vibrations may still lead to different levels of damage on the nuclear related equipment. Referring to the guideline NEI07-13, a maximum acceleration contour is plotted and the shock damage propagation distances under aircraft impact are assessed, which indicates that the nuclear equipment located within 11.5 m from the impact point may endure malfunction. Finally, by respectively considering the rigid and deformable impacts mainly induced by aircraft engine and fuselage, an improved Riera function is proposed to predict the impact force of aircraft A380.

Effects of sheds and cemented joints on seismic modelling of cylindrical porcelain electrical equipment in substations

  • Li, Sheng;Tsang, Hing-Ho;Cheng, Yongfeng;Lu, Zhicheng
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.55-65
    • /
    • 2017
  • Earthquake resilience of substations is essential for reliable and sustainable service of electrical grids. The majority of substation equipment consists of cylindrical porcelain components, which are vulnerable to earthquake shakings due to the brittleness of porcelain material. Failure of porcelain equipment has been repeatedly observed in recent earthquakes. Hence, proper seismic modelling of porcelain equipment is important for various limit state checks in both product manufacturing stage and detailed substation design stage. Sheds on porcelain core and cemented joint between porcelain component and metal cap have significant effects on the dynamic properties of the equipment, however, such effects have not been adequately parameterized in existing design guidelines. This paper addresses this critical issue by developing a method for taking these two effects into account in seismic modelling based on numerical and analytical approaches. Equations for estimating the effects of sheds and cemented joint on flexural stiffness are derived, respectively, by regression analyses based on the results of 12 pieces of full-scale equipment in 500kV class or higher. The proposed modelling technique has further been validated by shaking table tests.

Code Requirements for Fuel Handling Equipment at Nuclear Power Plant

  • Chang, Sang-Gyoon;Kang, Tae-Kyo;Kim, Jong-Min;Jung, Jong-Pil
    • 방사성폐기물학회지
    • /
    • 제20권1호
    • /
    • pp.119-126
    • /
    • 2022
  • This study provides technical information about the nuclear fuel handling process, which consists of various subprocesses starting from new fuel receipt to spent fuel shipment at a nuclear power plant and the design requirements of fuel handling equipment. The fuel handling system is an integrated system of equipment, tools, and procedures that allow refueling, handling and storage of fuel assemblies, which comprise the fuel handling process. The understanding and reaffirming of detailed code requirements are requested for application to the design of the fuel handling and storage facility. We reviewed the design requirements of the fuel handling equipment for its adequate cooling, prevention of criticality, its operability and maintainability, and for the prevention of fuel damage and radiological release. Furthermore, we discussed additional technical issues related to upgrading the current code requirements based on the modification of the fuel handling equipment. The suggested information provided in this paper would be beneficial to enhance the safety and the reliability of the fuel handling equipment during the handling of new and spent fuel.

Reliability Evaluation of Power System Operations Considering Time-Varying Features of Components

  • Hu, Bo;Zheng, Ying;Yang, Hejun;Xia, Yun
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1422-1431
    • /
    • 2015
  • The reliability of power system components can be affected by a numbers of factors such as the health level of components, external environment and operation environment of power systems. These factors also affect the electrical parameters of power system components for example the thermal capacity of a transmission element. The relationship of component reliability and power system is, therefore, a complex nonlinear function related to the above-mentioned factors. Traditional approaches for reliability assessment of power systems do not take the influence of these factors into account. The assessment results could not, therefore, reflect the short-term trend of the system reliability performance considering the influence of the key factors and provide the system dispatchers with enough information to make decent operational decisions. This paper discusses some of these important operational issues from the perspective of power system reliability. The discussions include operational reliability of power systems, reliability influence models for main performance parameters of components, time-varying reliability models of components, and a reliability assessment algorithm for power system operations considering the time-varying characteristic of various parameters. The significance of these discussions and applications of the proposed techniques are illustrated by case study results using the IEEE-RTS.