• Title/Summary/Keyword: Power equipment

Search Result 4,060, Processing Time 0.033 seconds

Calculation of the Harmonic Emission Limit for low-Voltage Electrical Equipment (국내 저압 전기기기의 고조파 유출 제한값 산정)

  • Kang, Moon-Ho;Song, Yang-Hoi;Lee, Heung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.56-61
    • /
    • 2008
  • Because the harmonic disturbance characteristic which makes voltage drop and the deterioration of instantaneous power quality in electrical power system overheats the NGR and the customer capacitor and malfunctions the OCGR and AMR, it is necessary for electric power company to take active measures to reduce this disturbance. International Electrotechnical Commission(IEC) 61000-3-2 specifies limits for harmonic current emissions generated by low voltage(LV) electrical equipment whose input current $\leq$ 16(A) per phase. Analysis shows that limits for Class A equipment in IEC are calculated using the reference impedance of LV system and maximum permissible voltage and limits for other Classes are also calculated based on limits for Class A. Therefore we have calculated four(4) internal limits for LV electrical equipment using the korea reference impedance and maximum permissible voltage in this paper.

A Study on the Analysis of Efficiency for Underground Distribution Equipment by Installment Ways (지중배전공사에 설치되는 기기의 설치위치에 따른 영향 분석에 관한 연구)

  • Kim, Joon-Eel;Kim, Dong-Myung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.83-89
    • /
    • 2009
  • The environment of electrical power industry is now faced on problems such as electric rates, an increasing sensitivity in society with environmental issues and energy factors. Up to now, reliability is greatly influenced by maintenance and environmental factors that are unique to the electric utilities. The reliability is a characteristic assigned to the electric power systems's function which is related to the concept of installment of equipment. Therefore this reports's key finding is that it is important that the utilities track their individual components' value over investment expense of their installed components. This can be accomplished to consider the cases of foreign electric power companies and take into account the various possible installment ways of equipment in Korea. These results are expected to be used as a reference material for design underground distribution facilities and future applications.

Proper Decision for Maintenance Intervals of Equipment in Power Stations by Considering Maintenance Replacement Rate and Operation Rate

  • Nakamura, Masatoshi;Suzuki, Yoshihiro;Hatazaki, Hironori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.157.3-157
    • /
    • 2001
  • In this paper, the optimal maintenance scheduling for turbine with considering maintenance replacement rate was proposed in order to reduce the maintenance cost during the whole period of operation, meanwhile keeping current reliability of turbine. The proposed method is only based on a few limited available data with various factors relating to maintenance replacement and repair of turbine. The proposed method will be adopted by Kyushu Electric Power Co., Inc. from April in 2002 to determine the maintenance schedule of thermal power plants.

  • PDF

An Investigation into the Impact on Voltage Sag due to Faults in Low Voltage Power Distribution Systems

  • Aggarwal R. K.
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.97-102
    • /
    • 2005
  • Voltage sags are the most widespread quality issues affecting distribution systems. This paper describes in some detail the voltage sag characteristics due to different types and locations of fault in a practical low voltage power distribution system encountered in the UK. The results not only give utility engineers very useful information when identifying parts of the system most likely to pose problems for customer equipments, but also assist the facility personnel to make decisions on purchasing power quality mitigation equipment.

Technical trend of the 42V power system for a Vehicles (자동차용 42V 전장시스템의 기술동향)

  • Lee, Jong-Chan;Choi, Uk-Don
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.112-117
    • /
    • 2002
  • This paper will present the basic concept and technical trends of the 42V system for the future vehicles structure that is in the process of research and development by the world-wide vehicle manufacturers and the suppliers. The power conversion equipment on the vehicles and an ISG(Integrated Starter Generator) for 42V are introduced. The fundamental research related to the advanced automaker's technical trends and investigations are performed.

  • PDF

Development of Automatic Evaluation Equipment for Burden of Instrument Transformer using Resistor Simulator (저항기를 이용한 계기용 변성기 부담 자동 평가 장치 개발)

  • Lee, Young Seob;Jung, Jae Kap
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.589-595
    • /
    • 2014
  • The error of instrument transformers is measured by connecting the external burden with the secondary terminal of the instrument transformers. Because the error of transformer is affected by the apparent power and power factor of the external burden, an accurate measurement of burden is important for transformer evaluation. We have developed the burden evaluation equipment for both potential transformer and current transformer by employing the series resistor in the range of $20m{\Omega}{\sim}5{\Omega}$ and the parallel resistor in the range of $1M{\Omega}{\sim}500{\Omega}$, respectively, together with visual basic program. We could reduce testing time more than 5 times by employing method developed in this study, compared with that developed in past. This method shows more better reliability by analyzing the evaluation results and fitting graphs of burden measurements. The test results of the developed system is compared with those obtained in the power meter analyzer to verify the validity.

The Effect of Series and Shunt Redundancy on Power Semiconductor Reliability

  • Nozadian, Mohsen Hasan Babayi;Zarbil, Mohammad Shadnam;Abapour, Mehdi
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1426-1437
    • /
    • 2016
  • In different industrial and mission oriented applications, redundant or standby semiconductor systems can be implemented to improve the reliability of power electronics equipment. The proper structure for implementation can be one of the redundant or standby structures for series or parallel switches. This selection is determined according to the type and failure rate of the fault. In this paper, the reliability and the mean time to failure (MTTF) for each of the series and parallel configurations in two redundant and standby structures of semiconductor switches have been studied based on different failure rates. The Markov model is used for reliability and MTTF equation acquisitions. According to the different values for the reliability of the series and parallel structures during SC and OC faults, a comprehensive comparison between each of the series and parallel structures for different failure rates will be made. According to the type of fault and the structure of the switches, the reliability of the switches in the redundant structure is higher than that in the other structures. Furthermore, the performance of the proposed series and parallel structures of switches during SC and OC faults, results in an improvement in the reliability of the boost dc/dc converter. These studies aid in choosing a configuration to improve the reliability of power electronics equipment depending on the specifications of the implemented devices.

A Study on the Optimization of Power Supply Equipment for Plate Mill Plant in Steelworks (제철소 후판공장 전원공급설비의 용량 최적화에 관한 연구)

  • Ko, Hyun-Ok;Park, Ji-Ho;Kim, Dong-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1300-1305
    • /
    • 2014
  • In this paper, we suggest an optimization method which can save about 5[%] of the cost though the optimizing of configuration and capacity for the facility. To achieve this goal, we compared the design data of the power, motor and drive system with the actual operation data of the plate mill plant in K-Steelworks. Therefore we measured the actual loading data by facilities considering the operating conditions of the plate mill plant in K-Steelworks, after that analyzed these data. In addition, we review the optimal capacity for transformer, switchgear and drive, and also reconfigured the electrical room and power single line diagram through the validation of motor data by equipment and the confirmation of process data considering the load characteristics. Consequently, the optimization method of capacity for the facilities shall have effectiveness in building new plate mill plant to further reduce costs at future.

A game theory approach for efficient power control and interference management in two-tier femtocell networks based on local gain

  • Al-Gumaei, Y. A.;Noordin, K. A.;Reza, A. W.;Dimyati, K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2530-2547
    • /
    • 2015
  • In the recent years, femtocell technology has received a considerable attention due to the ability to provide an efficient indoor wireless coverage as well as enhanced capacity. However, under the spectrum sharing between femtocell user equipment (FUEs) and the owner of spectrum macrocell user equipment (MUEs), both may experience higher uplink interference to each other. This paper proposes a novel distributed power control algorithm for the interference management in two-tier femtocell networks. Due to the assignment of licensed radio frequency to the outdoor macrocell users, the access priority of MUEs should be higher than FUEs. In addition, the quality of service (QoS) of MUEs that is expressed in the target signal-to-interference-plus-noise ratio (SINR) must always be achieved. On the other hand, we consider an efficient QoS provisioning cost function for the low-tier FUEs. The proposed algorithm requires only local information and converges even in cases where the frontiers of available power serve the target SINRs impossible. The advantage of the algorithm is the ability to implement in a distributed manner. Simulation results show that the proposed algorithm based on our cost function provides effective resource allocation and substantial power saving as compared to the traditional algorithms.