• Title/Summary/Keyword: Power device packaging

Search Result 63, Processing Time 0.029 seconds

Transmit-receive Module for Ka-band Seekers using Multi-layered Liquid Crystal Polymer Substrates (다층 액정폴리머 기판을 이용한 Ka대역 탐색기용 송수신 모듈)

  • Choi, Sehwan;Ryu, Jongin;Lee, Jaeyoung;Lee, Jiyeon;Nam, ByungChang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.63-70
    • /
    • 2020
  • In this paper, the transmit-receive module for military seekers has been designed and fabricated in 35 GHz. To increase the performance of substrates and high integration of circuits in millimeter-wave band, a 4-layer LCP(Liquid Crystal Polymer) substrate was developed. This substrate was implemented with three FCCL substrates and two adhesive layers, and a process using the difference in melting point between the substrates was used for lamination. Using a strip line and a microstrip line was confirmed by the transmission loss along the length of the substrate, and the performance of LCP substrates was validated with a power divider in 35 GHz. After confirming the performance of individual blocks such as power amplifier and low noise amplifier, a single channel Ka-band transmission/reception module was developed using a 4-layer liquid crystal polymer substrate. The transmit power of this module has above 1.1W in pulse duty 10% and has an output power of 1.1W and it has receive noise figure less than 8.5 dB and receive gain more than 17.6 dB.

Fatigue Life Analysis for Solder Joint of Optical Thin Film Filter Device (다층 박막 광학 필터 디바이스의 패키징시 솔더 조인트의 피로파괴 수명 해석)

  • 김명진;이형만
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.19-26
    • /
    • 2003
  • Plastic and creep deformations of a solder joint on thermal cycle play an important role in the reliability of optical telecommunication components. Solder joint strain is increased with the thermal cycle time and it causes mis-alignments and power loss in the optical component. Furthermore, the component can be failed since the deformation exceed the limitation of the fatigue life. We applied the finite element analysis method to solve the problem of the solder joint reliability on thermal cycle. Plastic and creep deformations are calculated by the finite element method. And, the fatigue lire is predicted by using creep-fatigue prediction models with calculated strains. The temperature conditon of the analysis was referred from the Telcordia reliability schedule (-40 to 75). Also, the three ramp renditions, 1/min, 10/min and 50/min, and dwelling time were considered to analyze the differences of results.

  • PDF

Synthesis of Organic-inorganic Core-shell Nanoparticle Powder using Immersion Annealing Process (담금 어닐링을 이용한 유·무기 코어-쉘 나노입자 파우더 합성법)

  • Choi, Young Joong;Jung, Hyunsung;Bang, Jiwon;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.35-40
    • /
    • 2018
  • Simple and useful synthetic process to control the morphology of block copolymers (BCPs) is required for implementation in various device applications. However, the conventional method to use colloidal templates is not enough to realize the production of pure and massive core-shell nanoparticles due to the cost-intensive complex process. Here, we introduce a novel and facile synthesis method to realize the formation of core-shell $SiO_x$ nanoparticle power by employing an immersion annealing of a sphere-forming poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) BCP. We successfully obtained a PS-encapsulated $SiO_x$ nanoparticle with a diameter of ~20 nm. In addition, we analyzed how the mixing ratio of heptane/ethanol affects the BCP morphology of self-assembled PS-b-PDMS nanoparticles, showing a worm-like structure under the optimum immersion conditions. This useful approach is expected to be extendable to other solvent-based BCP synthesis, providing a new guideline for unique BCP production.

Development of Energy Harvesting Hybrid system consisted of Electrochromic Device and Dye-Sensitized Solar Cell using Nano Particle Deposition System (나노 입자 적층 시스템(NPDS)을 이용한 염료 감응 태양전지 - 전기 변색 통합 소자 및 에너지 하베스팅 시스템에 대한 연구)

  • Kim, Kwangmin;Kim, Hyungsub;Choi, Dahyun;Lee, Minji;Park, Yunchan;Chu, Wonshik;Chun, Dooman;Lee, Caroline Sunyong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.65-71
    • /
    • 2016
  • In this study, Antimony Tin Oxide (ATO) ion storage layer and $TiO_2$ working electrode were fabricated using Nano Particle Deposition System. NPDS is the cutting-edge technology among the dry deposition methods. Accelerated particles are deposited on the substrate through the nozzle using NPDS. The thicknesses for coated layers were measured and layer's morphology was acquired using SEM. The fabricated electrochromic cell's transmittance was measured using UV-Visible spectrometer and power source at 630 nm. As a result, the integrated electrochromic/DSSC hybrid system was successfully fabricated as an energy harvesting system. The fabricated electrochromic cell was self-operated using DSSC as a power source. In conclusion, the electrochromic cell was operated for 500 cycles, with 49% of maximum transmittance change. Also the photovoltaic efficiency for DSSC was measured to be 2.55% while the electrochromic cell on the integrated system had resulted in 26% of maximum transmittance change.

Design of a Pin-Fin Structure in a Channel Considering the Heat Transfer and Pressure Drop Characteristics (열전달 및 압력강하 특성을 고려한 채널 내 핀-휜 구조물의 설계)

  • Shin, Jee-Young;Son, Young-Seok;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.459-467
    • /
    • 2006
  • Rapid development of electronic technology requires small size, high density packaging and high power in the electronic devices, which results in more heat generation. Suitable heat dissipation is required to ensure the guaranteed performance and reliable operation of the current state-of-the-art electronic equipment. The aim of the present study is to find out the forced-convective thermal-hydraulic characteristics of a pin-fin heat exchanger as a candidate for cooling system of the electronic devices through the analysis and experiment. Various configuration of the pin-fin array is selected in order to find out the effect of spacing and diameter of the pin-fin on the heat transfer and pressure drop characteristics. Experimental results are compared with the analyses and correlations of several researchers. Finally, the design guide are provided for the required pressure drop and/or the heat transfer characteristics of the heat exchanger.

A Study on the Application of Thermoelectric Module to the Electric Telecommunication Equipment Cooling (열전소자를 이용한 전자 통신장비 냉각에 관한 연구)

  • Kim, Jong-Soo;Im, Yong-Bin;Kong, Sang-Un
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.16 no.2
    • /
    • pp.210-217
    • /
    • 2004
  • Cooling technology has been a vital prerequisite for the rapid, if not explosive, growth of the electronic equipment industry. This has been especially true during the last 20 years with the advent of intergrated circuit chips and their applications in computers and related electronic products. The purpose of this study is to develop a telecommunication equipment cooling system using a thermoelectric module combined with cooling fan. Thermoelectric module is a device that can perform cooling only by input of electric power. In the present study, the cooling package using the thermoeletric module has been developed to improve the thermal performance. The cooling characteristics of the electronic chip was placed into the subrack and it can be rapidly assembled or disassembled in the equipment rack. As a preliminary experiment, the cooling performances between a conventional way using a cooling fin and a proposed method applying the thermoelectric module was comosed and analyzyed. The cooling performance at a simulated electronic component packaging a thermomodule operated well.

PDMS-based pixel-wall bonding technique for a flexible liquid crystal display (플렉서블 액정 디스플레이를 위한 PDMS 기반 pixel-wall bonding 기술)

  • Kim, Young-Hwan;Park, Hong-Gyu;Oh, Byeong-Yun;Kim, Byoung-Yong;Paek, Kyeong-Kap;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.42-42
    • /
    • 2008
  • Considerable attention has been focused on the applications of flexible liquid crystal (LC)-based displays because of their many potential advantages, such as portability, durability, light weight, thin packaging, flexibility, and low power consumption. To develop flexible LCDs that are capable of delivering high-quality moving images, like conventional glass-substrate LCDs, the LC device structure must have a stable alignment layer of LC molecules, concurrently support uniform cell gaps, and tightly bind two flexible substrates under external tension. However, stable LC molecular alignment has not been achieved because of the layerless LC alignment, and consequently high-quality images cannot be guaranteed. To solve these critical problems, we have proposed a PDMS pixel-wall based bonding method via the IB irradiation was developed for fasten the two substrates together strongly and maintain uniform cell gaps. The effect of the IB irradiation on PDMS with PI surface was also evaluated by side structure configuration and a result of x-ray photoelectron spectroscopic analysis of PDMS interlayer as a function of binder with substrates. large number of PDMS pixel-walls are tightly fastened to the surface of each flexible substrate and could maintain a constant cell gap between the LC molecules without using any other epoxy or polymer. To enhance the electro-optical performance of the LC device, we applied an alignment method that creates pretilt angle on the PI surface via ion beam irradiation. Using this approach, our flexible LCDs have a contrast ratio of 132:1 and a response time of about 15 ms, resulting in highly reliable electro-optical performance in the bent state, comparable to that of glass-substrate LCDs.

  • PDF

Room-temperature Bonding and Mechanical Characterization of Polymer Substrates using Microwave Heating of Carbon Nanotubes (CNT 마이크로파 가열을 이용한 고분자 기판의 상온 접합 및 기계적 특성평가)

  • Sohn, Minjeong;Kim, Min-Su;Ju, Byeong-Kwon;Lee, Tae-Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.89-94
    • /
    • 2021
  • The mechanical reliability of flexible devices has become a major concern on their commercialization, where the importance of reliable bonding is highlighted. In terms of component materials' properties, it is important to consider thermal damage of polymer substrates that occupy large area of the flexible device. Therefore, room temperature bonding process is highly advantageous for implementing flexible device assemblies with mechanical reliability. Conventional epoxy resins for the bonding still require curing at high temperatures. Even after the curing procedure, the bonding joint loses flexibility and exhibits poor fatigue durability. To solve this problems, low-temperature and adhesive-free bonding are required. In this work, we develop a room temperature bonding process for polymer substrates using carbon nanotube heated by microwave irradiations. After depositing multiple-wall carbon nanotubes (MWNTs) on PET polymer substrates, they are heated locally with by microwave while the entire bonding specimen maintains room temperature and the heating induces mechanical entanglement of CNT-PET. The room temperature bonding was conducted for a PET/CNT/PET specimen at 600 watt of microwave power for 10 seconds. Thickness of the CNT bonding joint was very thin that it obtains flexibility as well. In order to evaluate the mechanical reliability of the joint specimen, we performed lap shear test, three-point bending test, and dynamic bending test, and confirmed excellent joint strength, flexibility, and bending durability from each test.

Thermoelectric Characteristics of the Electroplated Bi-Te Films and Photoresist Process for Fabrication of Micro Thermoelectric Devices (전기도금 공정으로 제조한 Bi-Te 박막의 열전특성 및 미세열전소자 형성용 포토레지스트 공정)

  • Lee, Kwang-Yong;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.2 s.43
    • /
    • pp.9-15
    • /
    • 2007
  • Thermoelectric properties of the electrodeposited Bi-Te films and photoresist process have been investigated to apply for thermoelectric thin film devices. After plating in Bi-Te solutions of 20 mM concentration, which were prepared by dissolving $Bi_2O_3$ and $TeO_2$ into 1M $HNO_3$, thermoelectric properties of the films were characterized with variation of the Te/(Bi+Te) ratio in a plating solution. With increasing the Te/(Bi+Te) ratio in the plating solution from 0.5 to 0.65, Seebeck coefficient of Bi-Te films changed from $-59{\mu}V/K$ to $-48{\mu}V/K$ and electrical resistivity was lowered from $1m{\Omega}-cm$ to $0.8m{\Omega}-cm$ due to the increase in the electron concentration. Maximum power factor of $3.5{\times}10^{-4}W/K^2-m$ was obtained for the Bi-Te film with the $Bi_2Te_3$ stoichiometric composition. Using multilayer overhang process, the photoresist pattern to form thermoelectric legs of 30 m depth and 100m diameter was successfully fabricated fur micro thermoelectric device applications.

  • PDF

Fabrication and Characterization of High Performance Green OLEDs using $Alq_3$-C545T Systems ($Alq_3$-C545T시스템을 이용한 고성능 녹색 유기발광다이오드의 제작과 특성 평가)

  • Jang Ji-Geun;Kim Hee-Won;Shin Se-Jin;Kang Eui-Jung;Ahn Jong-Myong;Lim Yong-Gyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.51-55
    • /
    • 2006
  • The green emitting high performance OLEDs using the $Alq_3$-C545T fluorescent system have been fabricated and characterized. In the device fabrication, 2-TNATA [4,4',4'-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as a hole injection material and NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as a hole transport material were deposited on the ITO(indium thin oxide)/glass substrate by vacuum evaporation. And then, green color emission layer was deposited using $Alq_3$ as a host material and C-545T[10-(2-benzothiazolyl)-1,1,7,7- tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]/benzopyrano[6,7,8-ij]-quinolizin-11-one] as a dopant. Finally, small molecule OLEDs with structure of ITO/2-TNATA/NPB/$Alq_3$:C545T/$Alq_3$/LiF/Al were obtained by in-situ deposition of $Alq_3$, LiF and Al as the electron transport material, electron injection material and cathode, respectively. Green OLEDs fabricated in our experiments showed the color coordinate of CIE(0.29, 0.65) and the maximum power efficiency of 7.3 lm/W at 12 V with the peak emission wavelength of 521 nm.

  • PDF