• Title/Summary/Keyword: Power control panel

Search Result 191, Processing Time 0.022 seconds

Active Structural Acoustical Control of a Smart Panel Using Direct Velocity Feedback (직접속도 피드백을 이용한 지능판의 능동구조음향제어)

  • Stephen J, Elliott;Paolo, Gardonio;Young-Sup, Lee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.1007-1014
    • /
    • 2004
  • This paper presents a study of low frequencies volume velocity vibration control of a smart panel in order to reduce sound transmission. A distributed piezoelectric quadratically shaped polyvinylidene fluoride (PVDF) polymer film is used as a uniform force actuator and an array of $4\;{\times}\;4$ accelerometer is used as a volume velocity sensor for the implementation of a single-input single-output control system. The theoretical and experimental study of sensor-.actuator frequency response function shows that this sensor-actuator arrangement provides a required strictly positive real frequency response function below about 900 Hz. Direct velocity feedback could therefore be implemented with a limited gain which gives reductions of about 15 dB in vibration level and about 8 dB in acoustic power level at the (1,1) mode of the smart panel. It has been also shown that the shaping error of PVDF actuator could limit the stability and performance of the control system.

Evaluation of a FPGA controlled distributed PV system under partial shading condition

  • Chao, Ru-Min;Ko, Shih-Hung;Chen, Po-Lung
    • Advances in Energy Research
    • /
    • v.1 no.2
    • /
    • pp.97-106
    • /
    • 2013
  • This study designs and tests a photovoltaic system with distributed maximum power point tracking (DMPPT) methodology using a field programmable gate array (FPGA) controller. Each solar panel in the distributed PV system is equipped with a newly designed DC/DC converter and the panel's voltage output is regulated by a FPGA controller using PI control. Power from each solar panel on the system is optimized by another controller where the quadratic maximization MPPT algorithm is used to ensure the panel's output power is always maximized. Experiments are carried out at atmospheric insolation with partial shading conditions using 4 amorphous silicon thin film solar panels of 2 different grades fabricated by Chi-Mei Energy. It is found that distributed MPPT requires only 100ms to find the maximum power point of the system. Compared with the traditional centralized PV (CPV) system, the distributed PV (DPV) system harvests more than 4% of solar energy in atmospheric weather condition, and 22% in average under 19% partial shading of one solar panel in the system. Test results for a 1.84 kW rated system composed by 8 poly-Si PV panels using another DC/DC converter design also confirm that the proposed system can be easily implemented into a larger PV power system. Additionally, the use of NI sbRIO-9642 FPGA-based controller is capable of controlling over 16 sets of PV modules, and a number of controllers can cooperate via the network if needed.

통신위성 전력시스템의 기본 설계

  • Choe, Jae-Dong
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.84-96
    • /
    • 2002
  • The major goal of this research is to use as a baseline guide for a flight model design of power system of next domestic communication satellite. For this purpose, the EPS(Electrical Power Subsystem) is designed to compliance performance requirements specified in EPS subsystem specification during all expected spacecraft operations. The regulated electrical power bus gives 42.5V to the various spacecraft loads from PCDU(Power Control & Distribution Unit) and the solar arrays are composed of 6 panel, each panel has 3 circuits including 7 string. The battery system is comprised of two batteries consisting of 26 IPV(Individual-Pressure-Vessel) NiH2 cells. Each battery can be capable of delivering 2878Watt-hours at a 80% maximum DOD(Depth of Discharge) based on the nameplate capacity of 150 amper-hours.

  • PDF

An Automatic Back-Light Brightness Control System of Mobile Display Using Built-In Photo Sensor (내장형 광센서를 이용한 모바일 디스플레이의 자동 광원 밝기 조정 시스템)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.713-716
    • /
    • 2008
  • This paper presents an automatic back-light brightness control system for mobile displays. One of the most important factors in mobile display is the power consumption due to the limited and movable power source. More than 80% of power of the LCD display is consumed by LED bark-light unit (BLU). The target brightness also becomes higher because of its moving picture and high resolution image, so there are some side effects for not only excessive power consumption but also ergonomic inconvenience in dark environment. To prevent this discomfort and reduce power consumption, this paper proposes automatic brightness control (ABC) technique in mobile displays. Developed system contains TFT-LCD panel with built-in photo sensor, driver IC capable of controlling photo sensor, and BLU. Since the photo sensor array built in panel detects automatically outdoor ambient light intensity, the power of BLU in dark environment is reduced. Developed ABC system showed reduced power consumption of 50% in dark environment. We believe that the proposed system is very useful to control power of mobile TFT-LCD.

  • PDF

A Study on Development of Virtual MCR Collaboration Training System (가상 MCR 협동 훈련 시스템(Virtual MCR Collaboration training System)에 관한 연구)

  • Yoo Hyeon Ju;Lee Yong-Gwan;Lee Myeong-Su;Hong Jin-Hyeok;Choe Jin-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.124-127
    • /
    • 2001
  • 가상현실 기술을 이용한 컴퓨터 지원 교육훈련 시스템 (VR-CATS: Virtual Reality based Computer Assisted Training System) 개발에 대한 연구를 전력연구원에서는 계속 수행해 왔다. 본 논문에서는 New VR-CATS (울진 3호기 참조)중 가상현실에서의 공동 협동 훈련 시스템(Virtual Reality Collaboration Training System)의 설계에 관하여 서술한다. 공동작업은 발전소 MCR(Main Control Room)을 3D 데이터 모델링 후 가상현실화하고 MCR 내부를 Navigation 할 수 있도록 가상패널(Virtual Panel)을 개발 및 에에 대한 엔지니어링 데이터베이스환경을 작성하여 추후 정확하고 신속한 계기 정보를 얻을 수 있도록 하며 훈련생들이 시뮬레이터실로 가지 않고 MCR에서 발전소를 운전하는 것과 같은 효과를 강의실에서 얻을 수 있다. 또한 설계기준사고 중의 하나인 LOCA 사고 복구 훈련 시나리오를 통하여 실제와 동일한 복구 훈련을 하므로서 효율적이며 현장감있는 교육훈련 수행을 가능케 한다.

  • PDF

A sputtering technique of magnesium oxide thin film in oxide mode for plasma display panel (Plasma Display Panel용 산화마그네슘 박막의 산화영역에서의 스퍼터 성막기술)

  • Choi, Young-Wook;Kim, Jee-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1874-1875
    • /
    • 2004
  • A high rate deposition sputtering process of magnesium oxide thin film in oxide mode has been developed using a 20 kW unipolar pulsed power supply. The powersupply was operated at a maximum constant voltage of 500 V and a constant current of 40 A. The pulse repetition rate and the duty were changed in the ranges of 10 ${\sim}$ 50 kHz and 10 ${\sim}$ 60 %, respectively. The deposition rate increased with increasing incident power to the target. Maximum incident power to the magnesium target was obtained by the control of frequency, duty and current. The deposition rate of a moving state was 9 nm m/min at the average power of 1.5 kW. This technique is proposed to apply high through-put sputtering system for plasma display panel.

  • PDF

Maximum-Power-Point Tracking Using Multiphase Interleaved Converters Based on Multi-Unit Synchronization

  • Jantharamin, Niphat;Thongbuaban, Ponlawat
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.88-92
    • /
    • 2014
  • This paper presents an application of a multiphase interleaved converter in tracking maximum power points (MPPs) of a photovoltaic (PV) panel regardless of environmental variations. Maximum power from the panel was extracted by means of the well-known the perturb-and-observe (P&O) method. The switching control technique used an interleaving scheme based on multi-unit synchronization. The converter performed harmonic attenuation without affecting the tracking speed. This approach is straightforward, reliable and inexpensive, and could be applied to any higher number of switching cells without difficulty.

An Instrumentation System Design for Electrical Accident Prevention of 3-Phase Electrical Control Panel (3상 전기제어반 전기사고 예방을 위한 계측시스템 설계)

  • Kwak, D.K.;Choi, J.K.;Kim, J.J.;Kwon, Y.J.;Song, G.
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.36-37
    • /
    • 2016
  • The main cause of electrical fires are caused due to short circuit and open circuit. This is generates an instantaneous electric arc or spark accompanied with such electric faults. These arcs generate a pressed wire, contact badness, and a weakness in the wire coating etc.. This research proposes a protection circuit to prevent open-phase accident due to contact failure of electromagnetic contactor, tracking arc fault, open-phase within the three-phase electrical control panel which is the most commonly applied in the industry. The proposed circuit also alarms and cuts off of power system when electrical faults occurs. In addition, the proposed circuit is validated by various electric accident simulator.

  • PDF

Design and Implementation of a Bidirectional Power Supply Charger Using Super Capacitors and Solar Panel for Robot Cleaner Applications (슈퍼 커패시터 및 태양전지를 이용한 로봇청소기용 양방향 충전시스템 설계)

  • Zheng, Tao;Piao, Sheng-Xu;Kwon, Dae-Hwan;Qiu, Wei-Jing;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.97-102
    • /
    • 2016
  • In this paper, a bidirectional power supply charger is proposed. This system used a solar cell panel to generate electricity and used super capacitors to store these energies, which can be used for the robot cleaner or some other electronic products. This system include a phase-shift controlled bidirectional dual active bridge (DAB) converter, solar panel super capacitors and DSP controller. In the daytime it can charge to the super capacitors to store the energy generated by the solar cell panel and in the night it will release the energy stored in the super capacitors to loads. A prototype of the proposed bidirectional power supply charger system was designed which can achieve 18V to 30V input, 10V/20W output to super capacitors and 9V/6.5W output when it acts as a charger for the robot cleaner. The system is verified to be sTable and reliable by both the simulation and experimental results.

Pseudo-BIPV Style Rooftop-Solar-Plant Implementation for Small Warehouse Case

  • Cha, Jaesang;Cho, Ju Phil
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.187-196
    • /
    • 2022
  • In this paper, we propose an example of designing and constructing a roof-type solar power plant structure equipped with a Pseudo-BIPV (Building-Integrated Photovoltaic) shape suitable for use as a roof of a small warehouse with a sandwich-type panel structure. As the characteristics of the roof-type solar power generation facility to be installed in the small warehouse proposed in this study, the shape of the roof is not a general A type, but a right-angled triangle shape with the slope is designed to face south. We chose a structure in which an inverter for one power plant and a control facility are linked by grouping several roofs of buildings. In addition, the height of the roof structure is less than 20 cm from the floor, and it has a shape similar to that of the BIPV, so it is building-friendly because it is almost in close contact with the roof. At the same time, the roof creates a reflective light source due to the white color. By linking this roof with a double-sided solar panel, we designed it to obtain both the advantage of the roof-friendliness and the advantage of efficiency improvement for the electric power generation based on the double-sided panel. Compared to the existing solar power generation facilities using A-shaped cross-sectional modules, the power generation efficiency of roofs in this case is increased by more than 11%, which we can confirm, through the comparison analysis of monitoring data between power plants in the same area. Therefore, if the roof-type solar structure suitable for the small warehouse we have presented in this paper is used, the facilities of electric power generation is eco-friendly. Further it is easier to obtain facility certification compared to the BIPV, and improved capacity of the power generation can be secured at low material cost. It is believed that the roof-type solar power generation facility we proposed can be usefully used for warehouse or factory-based smart housing. Sensor devices for monitoring, CCTV monitoring, or safety and environment management, operating in connection with the solar power generation facilities, are linked with the Internet of Things (IoT) solution, so they can be monitored and controlled remotely.