Analysis and verification of reactive power compensator (RPC) for ITER pulsed power electric network (PPEN) are described in this paper. The RPC system is rated for a nominal power of 250 Mvar necessary to comply with the allowable reactive power limit value from the grid 200 Mvar. This system is currently under construction and is based on static var compensation technology with a thyristor-controlled reactor and a harmonic filter. The RPC minimizes reactive power from grid using prediction of reactive power consumption of AC-DC converters. The feasibility of the reactive power compensation was verified by assembling a real controller and implementing ITER PPEN in the real time digital simulator for the hardware-in-loop facility. When maximum reactive power is reached, grid voltage is stabilized and maximum reactive power decreased from 120 Mvar to 40 Mvar via the reactive power prediction method.
In this paper, we propose the Chaos Fuzzy controller to analyze the chaotic character of time series obtained from the specific plant and to predict the short-term for power consumption of the plant using the Fuzzy controller. We compared the predicted data with the active ones and checked the error generated by them after we time series of supplied power to the proposed controller. As a result of the simulation, we obtained a admirable consequence that the proposed controller can be advanced through various and accurate data acquisition, and continuous analysis of the resident and industrial environment.
우리나라는 자원 빈국인 동시에 에너지 다소비 국가이다. 또한 전기 에너지에 대한 사용량 및 의존도가 매우 높고, 총 에너지 사용의 20% 이상은 건물에서 소비된다. 딥러닝과 머신러닝에 대한 연구가 활발해지면서 다양한 알고리즘을 에너지 효율 분야에 적용하려는 연구가 진행되고 있으며, 에너지의 효율적인 관리를 위한 건물에너지관리시스템(BEMS)의 도입이 늘어가는 추세이다. 본 논문에서는 스마트플러그를 이용하여 직접 수집한 가구당 기기별 에너지 사용량을 바탕으로 데이터베이스를 구축하였다. 또한 RNN과 LSTM 모델을 이용하여 수집한 데이터를 효과적으로 분석 및 예측하는 알고리즘을 구현하였다. 추후 이 데이터는 에너지 사용량 예측을 넘어 전력 소비 패턴 분석 등에 적용할 수 있다. 이는 에너지 효율 개선에 도움이 될 수 있으며, 미래 데이터의 예측을 통해 효과적인 전력 사용량 관리에 도움을 줄 것으로 기대된다.
A cycle simulation of 4 cycle spark ignition engine using methanol-water blend as a fuel has been developed for study of prediction of power, specific fuel consumption, mean effective pressure and thermal efficiency. One-dimensional flow model for intake process and thermodynamic model for combustion process were selected. After, performance test was made with conventional engine which was modified in consideration of fuel properties. And computational results by simulation have been compared with experimental results. As the agreement between computational and experimental results was good, prediction of engine performance by was possible.
Both an optimal design of the engine operating strategy and fuel economy prediction technique for a HEV under the vehicle driving condition are very crucial for the development of vehicle fuel economy performance. Thus, in this study, engine operating characteristics of PRIUS III were analyzed with vehicle running conditions and the correlations between vehicle tractive power and fuel consumption were introduced. As a result, fuel economy performance of PRIUS III with various test modes were predicted and verified. Errors of predicted fuel economy were between -5% and -1%.
이 논문에서는 자동 원격 검침(AMR) 시스템에서 수집되는 전력 사용량 데이터의 분석 결과를 실세계에 적용하기 위하여 시간과 공간의 변화에 따른 전력 소비 패턴의 주기성 탐사를 위한 시공간 데이터마이닝 기법을 제안하였다. 첫째, 고객의 전력 사용 목적에 따른 군집 분석을 위하여 분할 군집화 기법을 적용하였다. 둘째, 3차원 큐브 마이닝 기법을 적용하여 고객의 전력 소비 데이터가 갖는 시간 속성과 공간 속성에 대한 패턴을 탐색하였다. 셋째, 다양한 시간 도메인에서의 주기 패턴 발견을 위한 캘린더 패턴 마이닝 기법을 이용하여 탐사된 패턴들이 갖고 있는 시간 속성의 의미와 관계를 분석 및 예측하였다. 제안된 시공간 데이터마이닝 기법을 평가하기 위해 한국 전력 연구원에서 구축된 GIS-AMR 시스템에 의해 제공되는 고압 전력 소비 고객 3,256명의 2007년 1월부터 4월까지 총 266,426건의 데이터로부터 시간의 주기성 및 공간적 특성을 포함한 전력 소비 패턴을 분석하였다. 제안한 분석 기법을 통하여 특정 그룹에 속한 각각의 대표 프로파일이 시간과 공간상에서 갖는 주기성을 발견하였다.
에너지인터넷 기술의 발전과 다양한 전자기기의 보급으로 에너지소비량이 패턴이 다양해짐에 따라 수요예측에 대한 신뢰도가 감소하고 있어 발전량 최적화 및 전력공급 안정화에 문제를 야기하고 있다. 본 연구에서는 고신뢰성을 갖는 수요예측을 위해 딥러닝 기법인 Convolution neural network(CNN)과 Bidirectional Long Short-Term Memory(BLSTM)을 융합한 1Dimention-Convolution and Bidirectional LSTM(1D-ConvBLSTM)을 제안하고, 제안한 기법을 활용하여 시계열 에너지소비량대한 소비패턴을 효과적으로 추출한다. 실험 결과에서는 다양한 반복학습 횟수와 feature map에 대해서 수요를 예측하고 적은 반복학습 횟수로도 테스트 데이터의 그래프 개형을 예측하는 것을 검증한다.
Currently an automated methodology based on data mining techniques is presented for the prediction of customer load patterns in load demand data. The main aim of our work is to forecast customers' contract information from capacity of daily power consumption patterns. According to the result, we try to evaluate the contract information's suitability. The proposed our approach consists of three stages: (i) data preprocessing: noise or outlier is detected and removed (ii) cluster analysis: SOMs clustering is used to create load patterns and the representative load profiles and (iii) classification: we applied the K-NNs classifier in order to predict the customers' contract information base on power consumption patterns. According to the our proposed methodology, power load measured from AMR(automatic meter reading) system, as well as customer indexes, were used as inputs. The output was the classification of representative load profiles (or classes). Lastly, in order to evaluate KNN classification technique, the proposed methodology was applied on a set of high voltage customers of the Korea power system and the results of our experiments was presented.
In drilling process of oil wells, the drilling fluid such as mud keeps the drill bit cool and clean during drilling, with suspending drill cuttings and lubricating a drill bit. In this paper, a commercial CFD package(ANSYS Fluent 15.0) was used to solve the hydrodynamic force and evaluate mud mixing time in the mud mixing tank on offshore drilling platforms. Prediction of power consumption in co-rotating and counter-rotating models has been compared with results of Nagata's correlation equation. This research shows the hydrodynamic effect inside the two phase mud mixing tank according to rotating directions(co-rotating and counter-rotating). These results, we can conclude that the co-rotating direction of the two shafts with mixing blade in the mud mixing tank can be a preferable in power consumption and mixing time reduction.
This paper presents an overview of testing and analyzing field performance of a centrifugal chiller which has a rated capacity of 200 RT(703 kW). Field data of a chiller installed in the cleanroom research building of KIST has been collected far performance analysis. The operating data included start-up, shut-down, and quasi-static state where cooling capacity and compressor power consumption varied cyclically. It was found that the steady-state thermodynamic model could be applied to relate the cooling capacity and COP under quasi-static conditions. The results led to finding the required cooling load pattern and a possible energy saving method. This study provides a method of evaluating performance of a large capacity centrifugal chiller in which field test is necessary.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.