• 제목/요약/키워드: Power consumption prediction

검색결과 168건 처리시간 0.023초

저전력 캐쉬를 위한 웨이-라인 예측 유닛을 이용한 새로운 드로시 캐싱 기법 (New Drowsy Cashing Method by Using Way-Line Prediction Unit for Low Power Cache)

  • 이정훈
    • 정보통신설비학회논문지
    • /
    • 제10권2호
    • /
    • pp.74-79
    • /
    • 2011
  • The goal of this research is to reduce dynamic and static power consumption for a low power cache system. The proposed cache can achieve a low power consumption by using a drowsy and a way prediction mechanism. For reducing the static power, the drowsy technique is used at 4-way set associative cache. And for reducing the dynamic energy, one among four ways is selectively accessed on the basis of information in the Way-Line Prediction Unit (WLPU). This prediction mechanism does not introduce any additional delay though prediction misses are occurred. The WLPU can effectively reduce the performance overhead of the conventional drowsy caching by waking only a drowsy cache line and one way in advance. Our results show that the proposed cache can reduce the power consumption by about 40% compared with the 4-way drowsy cache.

  • PDF

창원시 학교 건축물의 냉난방부하에 대한 전력 소비량 추정에 관한 연구 (A Study on Prediction of Power Consumption Rate for Heating and Cooling load of School Building in Changwon City)

  • 박효석;최정민;조성우
    • 교육녹색환경연구
    • /
    • 제11권2호
    • /
    • pp.19-27
    • /
    • 2012
  • This study was carried out in order to establish the estimation equation for school power consumption using regression analysis based on collected power consumption for two years of weather data and schools are located in Central Changwon and Masan district in Changwon city. (1) The power consumption estimation equation for Heating and cooling is calculated using power consumption per unit volume, the difference between actual power consumption and results of estimation equations is 4.1%. (2) The power consumption estimation equation for heating load is showed 2.6% difference compared to actual power consumption in Central Changwon and is expressed 2.9% difference compared to that in Masan district. Therefore, the power consumption prediction for each school using the power consumption estimation equation is possible. (3) The power consumption estimation equation for cooling load is showed 8.0% difference compared to actual power consumption in Central Changwon and is expressed 2.9% compared to that in Masan district. As the power consumption estimation equation for cooling load is expressed difference compared to heating load, it needs to investigate influence for cooling load.

유사 시계열 데이터 분석에 기반을 둔 교육기관의 전력 사용량 예측 기법 (Power Consumption Forecasting Scheme for Educational Institutions Based on Analysis of Similar Time Series Data)

  • 문지훈;박진웅;한상훈;황인준
    • 정보과학회 논문지
    • /
    • 제44권9호
    • /
    • pp.954-965
    • /
    • 2017
  • 안정적인 전력 공급은 전력 인프라의 유지 보수 및 작동에 매우 중요하며, 이를 위해 정확한 전력 사용량 예측이 요구된다. 대학 캠퍼스는 전력 사용량이 많은 곳이며, 시간과 환경에 따른 전력 사용량 변화폭이 다양하다. 이러한 이유로, 전력계통의 효율적인 운영을 위해서는 전력 사용량을 정확하게 예측할 수 있는 모델이 요구된다. 기존의 시계열 예측 기법은 학습 시점과 예측 시점 간의 차이가 클수록 예측 구간이 넓어짐으로 예측 성능이 크게 떨어진다는 단점이 있다. 본 논문은 이를 보완하려는 방안으로, 먼저 의사결정나무를 이용해 날짜, 요일, 공휴일 여부, 학기 등을 고려하여 시계열 형태가 유사한 전력 데이터를 분류한다. 다음으로 분류된 데이터 셋에 각각의 자기회귀누적이동평균모형을 구성하여, 예측 시점에서 시계열 교차검증을 적용해 대학 캠퍼스의 일간 전력 사용량 예측 기법을 제안한다. 예측의 정확성을 평가하기 위해, 성능 평가 지표를 이용하여 제안한 기법의 타당성을 검증하였다.

정규 확률과정을 사용한 공조 시스템의 전력 소모량 예측에 관한 연구 (A Study on the Prediction of Power Consumption in the Air-Conditioning System by Using the Gaussian Process)

  • 이창용;송근수;김진호
    • 산업경영시스템학회지
    • /
    • 제39권1호
    • /
    • pp.64-72
    • /
    • 2016
  • In this paper, we utilize a Gaussian process to predict the power consumption in the air-conditioning system. As the power consumption in the air-conditioning system takes a form of a time-series and the prediction of the power consumption becomes very important from the perspective of the efficient energy management, it is worth to investigate the time-series model for the prediction of the power consumption. To this end, we apply the Gaussian process to predict the power consumption, in which the Gaussian process provides a prior probability to every possible function and higher probabilities are given to functions that are more likely consistent with the empirical data. We also discuss how to estimate the hyper-parameters, which are parameters in the covariance function of the Gaussian process model. We estimated the hyper-parameters with two different methods (marginal likelihood and leave-one-out cross validation) and obtained a model that pertinently describes the data and the results are more or less independent of the estimation method of hyper-parameters. We validated the prediction results by the error analysis of the mean relative error and the mean absolute error. The mean relative error analysis showed that about 3.4% of the predicted value came from the error, and the mean absolute error analysis confirmed that the error in within the standard deviation of the predicted value. We also adopt the non-parametric Wilcoxon's sign-rank test to assess the fitness of the proposed model and found that the null hypothesis of uniformity was accepted under the significance level of 5%. These results can be applied to a more elaborate control of the power consumption in the air-conditioning system.

A Study of the Performance Prediction Models of Mobile Graphics Processing Units

  • Kim, Cheong Ghil
    • 반도체디스플레이기술학회지
    • /
    • 제18권1호
    • /
    • pp.123-128
    • /
    • 2019
  • Currently mobile services are on the verge of full commercialization ahead of 5G mobile communication (5G). The first goal could be to preempt the 5G market through realistic media services utilizing VR (Virtual Reality) and AR (Augmented Reality) technologies that users can most easily experience. Basically this movement is based on the advanced development of smart devices and high quality graphics processing computing power of mobile application processors. Accordingly, the importance of mobile GPUs is emerging and the most concern issue becomes a model for predicting the power and performance for smooth operation of high quality mobile contents. In many cases, the performance of mobile GPUs has been introduced in terms of power consumption of mobile GPUs using dynamic voltage and frequency scaling and throttling functions for power consumption and heat management. This paper introduces several studies of mobile GPU performance prediction model with user-friendly methods not like conventional power centric performance prediction models.

전력선통신 시스템을 위한 딥 러닝 기반 전력량 예측 기법 (Power Consumption Prediction Scheme Based on Deep Learning for Powerline Communication Systems)

  • 이동구;김수현;정호철;선영규;심이삭;황유민;김진영
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.822-828
    • /
    • 2018
  • 최근 전력 사용량의 증가로 인한 대규모 블랙아웃 등 에너지 문제가 대두되고 있으며, 이 문제들로 인해 전력 소비량 예측에 대한 정확도를 개선할 필요성이 부각되었다. 본 연구에서는 딥 러닝 기반의 전력 사용량 예측 실험을 통해서 실제 전력 소비량과 예측된 전력 소비량의 차이를 계산하고, 이를 통해서 전력 예비율을 기존 대비 하향 조정할 수 있는 가능성에 대해서 살펴본다. 예비 전력은 사용하지 않으면 손실되는 전력으로, 본 논문에서의 딥 러닝 기반 전력 소비량 예측을 통해서 여분의 전력을 과도하게 생산하지 않도록 오차범위 내에서 전력 예비율을 감소시킬 수 있는 기반을 마련할 수 있다. 본 논문에서 사용하는 딥 러닝 기법은 시계열 데이터를 처리하는 Long-Short-Term-Memory(LSTM) 구조의 학습 모델을 이용한다. 컴퓨터 시뮬레이션에서는 임의 생성한 전력 소비 데이터를 토대로 모델을 학습시키고, 학습된 모델을 토대로 전력 사용 예측값을 구하고 실제 전력 소비량 간에 오차를 계산한 결과 오차율 21.37%를 얻을 수 있었다. 이는 최근의 전력 예비율 45.9%를 고려할 때, 본 연구에서 제안한 전력 소비량 예측 알고리즘을 적용하는 경우 20% 포인트 정도의 예비율 감축이 가능하다.

Performance Improvement and Power Consumption Reduction of an Embedded RISC Core

  • Jung, Hong-Kyun;Jin, Xianzhe;Ryoo, Kwang-Ki
    • Journal of information and communication convergence engineering
    • /
    • 제10권1호
    • /
    • pp.78-84
    • /
    • 2012
  • This paper presents a branch prediction algorithm and a 4-way set-associative cache for performance improvement of an embedded RISC core and a clock-gating algorithm with observability don’t care (ODC) operation to reduce the power consumption of the core. The branch prediction algorithm has a structure using a branch target buffer (BTB) and 4-way set associative cache that has a lower miss rate than a direct-mapped cache. Pseudo-least recently used (LRU) policy is used for reducing the number of LRU bits. The clock-gating algorithm reduces dynamic power consumption. As a result of estimation of the performance and the dynamic power, the performance of the OpenRISC core applied to the proposed architecture is improved about 29% and the dynamic power of the core with the Chartered 0.18 ${\mu}m$ technology library is reduced by 16%.

순환여과식 양식장 해수 열원 히트펌프 시스템의 전력 소비량 예측을 위한 인공 신경망 모델 (Power consumption prediction model based on artificial neural networks for seawater source heat pump system in recirculating aquaculture system fish farm)

  • 정현석;류종혁;정석권
    • 수산해양기술연구
    • /
    • 제60권1호
    • /
    • pp.87-99
    • /
    • 2024
  • This study deals with the application of an artificial neural network (ANN) model to predict power consumption for utilizing seawater source heat pumps of recirculating aquaculture system. An integrated dynamic simulation model was constructed using the TRNSYS program to obtain input and output data for the ANN model to predict the power consumption of the recirculating aquaculture system with a heat pump system. Data obtained from the TRNSYS program were analyzed using linear regression, and converted into optimal data necessary for the ANN model through normalization. To optimize the ANN-based power consumption prediction model, the hyper parameters of ANN were determined using the Bayesian optimization. ANN simulation results showed that ANN models with optimized hyper parameters exhibited acceptably high predictive accuracy conforming to ASHRAE standards.

엘만 순환 신경망을 사용한 전력 에너지 시계열의 예측 및 분석 (The Prediction and Analysis of the Power Energy Time Series by Using the Elman Recurrent Neural Network)

  • 이창용;김진호
    • 산업경영시스템학회지
    • /
    • 제41권1호
    • /
    • pp.84-93
    • /
    • 2018
  • In this paper, we propose an Elman recurrent neural network to predict and analyze a time series of power energy consumption. To this end, we consider the volatility of the time series and apply the sample variance and the detrended fluctuation analyses to the volatilities. We demonstrate that there exists a correlation in the time series of the volatilities, which suggests that the power consumption time series contain a non-negligible amount of the non-linear correlation. Based on this finding, we adopt the Elman recurrent neural network as the model for the prediction of the power consumption. As the simplest form of the recurrent network, the Elman network is designed to learn sequential or time-varying pattern and could predict learned series of values. The Elman network has a layer of "context units" in addition to a standard feedforward network. By adjusting two parameters in the model and performing the cross validation, we demonstrated that the proposed model predicts the power consumption with the relative errors and the average errors in the range of 2%~5% and 3kWh~8kWh, respectively. To further confirm the experimental results, we performed two types of the cross validations designed for the time series data. We also support the validity of the model by analyzing the multi-step forecasting. We found that the prediction errors tend to be saturated although they increase as the prediction time step increases. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric and the gas energies.

성능 모니터링 이벤트들의 통계적 분석에 기반한 모바일 프로세서의 전력 예측 (Power Prediction of Mobile Processors based on Statistical Analysis of Performance Monitoring Events)

  • 윤희성;이상정
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권7호
    • /
    • pp.469-477
    • /
    • 2009
  • 제한된 용량의 배터리로 동작해야 하는 모바일 시스템에서는 소프트웨어 설계시 성능뿐만 아니라 전력소모도 고려해야 한다. 따라서 소프트웨어의 실행 중에 전력소모를 정확하게 예측할 수 있으면 전력과 성능을 고려한 효율적인 소프트웨어의 설계가 가능해진다. 본 논문에서는 모바일 프로세서의 전력소모 예측을 위해 정량적으로 프로세서의 동작을 분석하고 모델링 하는 통계적인 분석 방법을 제안한다. 제안된 방식은 다양한 벤치마크 프로그램들을 실행하여 프로세서의 성능 모니터링 이벤트들과 전력소모 데이터를 수집한 후 계층적 클러스터링(hierarchical clustering) 분석 등을 적용하여 서로 중복되지 않으면서 전력소모에 크게 기여하는 대표적인 성능 모니터링 이벤트들을 추출한다. 전력 예측 모델은 선택된 성능 모니터링 이벤트들이 독립변수가 되고 전력소모가 종속변수가 되는 회귀분석(regression analysis)을 수행하여 개발한다. 전력 예측 모델은 Intel XScale 아키텍처 기반의 PXA320 모바일 프로세서에 적용하여 평균 4% 이내의 에러율로 전력소모를 예측할 수 있음을 보인다.