• 제목/요약/키워드: Power consumption analysis

검색결과 1,195건 처리시간 0.028초

Environment-friendly and Low-Carbon Agriculture for Demand-Supply Control and Food Security of Korean Rice (쌀 수급안정과 식량안보를 위한 친환경·저탄소 농업 전환방안)

  • Yang, Seung-Koo;Park, Pyung-Sik;Son, Jang-Hwan;An, Kyu-Nam
    • Korean Journal of Organic Agriculture
    • /
    • 제26권1호
    • /
    • pp.99-128
    • /
    • 2018
  • The cultivation area of rice as staple grains is decreasing in the domestic situation in Korea. Import volume of a duty in foreign rice is 409,000 tons for a year regardless increasing of production per unit area and decreasing of rice consumption. The total stock of rice is increasing cumulatively despite the effort for production mediation of rice. Therefore, maintenance of cultivation area and reduction of production are necessary for national foodstuffs security problems. Development of environment-friendly and low-carbon technology as alternative of global warming and aging of farm labor power is very important responsibility for descendants with creation of sustainable agriculture environment. As alternative for demand and supply stabilization of rice from all angles, first stage: extension of environment-friendly cultivation area as 17% Jeollanam-do level with maintenance of cultivation area under the present circumstances, second stage: extension of environment-friendly cultivation area as 25%, third stage: extension of environment-friendly cultivation area as 35%. From above mentioned scenario, reduction of rice production (60,000 tons), increases of production cost (59,200,000,000 Won), and reduction of income (201,500,000,000 Won) are estimated in first stage. Reduction of rice production (90,000 tons), increases of production cost (122,100,000,000 Won), and reduction of income (313,700,000,000 Won) are estimated in second stage. Reduction of rice production (380,000 tons), increases of production cost (222,000,000,000 Won), and reduction of income (464,500,000,000 Won) are estimated in third stage. From analysis results for partial tillage in transplanting cultivation complex (10ha), rice production is decreased 1.3~1.5 ton by complex. Production cost of rice is decreased and increases of income cultivation type. Gradual extension of environment-friendly agriculture and low-carbon partial tillage could be expected for environment maintenance of the territorial integrity, confidence of consumer, and high-efficiency of low-cost.

A study on the introduction of organic waste-to-energy incentive system(I): Precise monitoring of biogasification (유기성폐자원에너지 인센티브제도 도입방안 연구(I): 바이오가스화 정밀모니터링)

  • Kwon, Jun-Hwa;Moon, Hee-Sung;Lee, Won-Seok;Lee, Dong-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • 제29권4호
    • /
    • pp.67-76
    • /
    • 2021
  • Biogasification is a technology that produces environmentally friendly fuel using methane gas generated in the process of stably decomposing and processing organic waste. Biogasification is the most used method for energy conversion of organic waste with high moisture content, and is a useful method for organic waste treatment following the prohibition of direct landfill (2005) and marine dumping (2013). Due to African Swine Fever (ASF), which recently occurred in Korea, recycling of wet feed is prohibited, and consumers such as dry feed and compost are negatively recognized, making it difficult to treat food waste. Accordingly, biogasification is attracting more attention for the treatment and recycling of food waste. Korea's energy consumption amounted to 268.41 106toe, ranking 9th in the world. However, it is an energy-poor country that depends on foreign imports for about 95.8% of its energy supply. Therefore, in Korea, the Renewable Energy Portfolio Standard (RPS) is being introduced. The domestic RPS system sets the weight of the new and renewable energy certificate (REC, Renewable energy certificate) of waste energy lower than that of other renewable energy. Therefore, an additional incentive system is required for the activation of waste-to-energy. In this study, the operation of an anaerobic digester that treats food waste, food waste Leachate and various organic wastes was confirmed. It was intended to be used as basic data for preparing the waste-to-energy incentive system through precise monitoring for a certain period of time. Four sites that produce biogas from organic waste and use them for power generation and heavy gas were selected as target facilities, and field surveys and sampling were conducted. Basic properties analysis was performed on the influent sample of organic waste and the effluent sample according to the treatment process. As a result of the analysis of the properties, the total solids of the digester influent was an average of 12.11%, and the volatile solids of the total solids were confirmed to be 85.86%. BOD and CODcr removal rates were 60.8% and 64.8%. The volatile fatty acids in the influent averaged 55,716 mg/L. It can be confirmed that most of the volatile fatty acids were decomposed and removed with an average reduction rate of 92.3% after anaerobic digestion.

A Study on the Determinants of Demand for Visiting Department Stores Using Big Data (POS) (빅데이터(POS)를 활용한 백화점 방문수요 결정요인에 관한 연구)

  • Shin, Seong Youn;Park, Jung A
    • Land and Housing Review
    • /
    • 제13권4호
    • /
    • pp.55-71
    • /
    • 2022
  • Recently, the domestic department store industry is growing into a complex shopping cultural space, which is advanced and differentiated by changes in consumption patterns. In addition, competition is intensifying across 70 places operated by five large companies. This study investigates the determinants of the visits to department stores using the big data concept's automatic vehicle access system (pos) and proposes how to strengthen the competitiveness of the department store industry. We use a negative binomial regression test to predict the frequency of visits to 67 branches, except for three branches whose annual sales were incomplete due to the new opening in 2021. The results show that the demand for visiting department stores is positively associated with airport, terminal, and train stations, land areas, parking lots, VIP lounge numbers, luxury store ratio, F&B store numbers, non-commercial areas, and hotels. We suggest four strategies to enhance the competitiveness of domestic department stores. First, department store consumers have a high preference for luxury brands. Therefore, department stores need to form their own overseas buyer teams to discover and attract new luxury brands and attract customers who have a high demand for luxury brands. In addition, to attract consumers with high purchasing power and loyalty, it is necessary to provide more differentiated products and services for VIP customers than before. Second, it is desirable to focus on transportation hub areas such as train stations, airports, and terminals in Gyeonggi and Incheon. Third, department stores should attract tenants who can satisfy customers, given that key tenants are an important component of advanced shopping centers for department stores. Finally, the department store, a top-end shopping center, should be developed as a space with differentiated shopping, culture, dining out, and leisure services, such as "The Hyundai", which opened in 2021, to ensure future growth potential.

Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone (Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지)

  • Ha, Eu Tteum;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • 제19권4호
    • /
    • pp.123-132
    • /
    • 2013
  • As the smartphones are equipped with various sensors such as the accelerometer, GPS, gravity sensor, gyros, ambient light sensor, proximity sensor, and so on, there have been many research works on making use of these sensors to create valuable applications. Human activity recognition is one such application that is motivated by various welfare applications such as the support for the elderly, measurement of calorie consumption, analysis of lifestyles, analysis of exercise patterns, and so on. One of the challenges faced when using the smartphone sensors for activity recognition is that the number of sensors used should be minimized to save the battery power. When the number of sensors used are restricted, it is difficult to realize a highly accurate activity recognizer or a classifier because it is hard to distinguish between subtly different activities relying on only limited information. The difficulty gets especially severe when the number of different activity classes to be distinguished is very large. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we take to dealing with this ten-class problem is to use the ensemble of nested dichotomy (END) method that transforms a multi-class problem into multiple two-class problems. END builds a committee of binary classifiers in a nested fashion using a binary tree. At the root of the binary tree, the set of all the classes are split into two subsets of classes by using a binary classifier. At a child node of the tree, a subset of classes is again split into two smaller subsets by using another binary classifier. Continuing in this way, we can obtain a binary tree where each leaf node contains a single class. This binary tree can be viewed as a nested dichotomy that can make multi-class predictions. Depending on how a set of classes are split into two subsets at each node, the final tree that we obtain can be different. Since there can be some classes that are correlated, a particular tree may perform better than the others. However, we can hardly identify the best tree without deep domain knowledge. The END method copes with this problem by building multiple dichotomy trees randomly during learning, and then combining the predictions made by each tree during classification. The END method is generally known to perform well even when the base learner is unable to model complex decision boundaries As the base classifier at each node of the dichotomy, we have used another ensemble classifier called the random forest. A random forest is built by repeatedly generating a decision tree each time with a different random subset of features using a bootstrap sample. By combining bagging with random feature subset selection, a random forest enjoys the advantage of having more diverse ensemble members than a simple bagging. As an overall result, our ensemble of nested dichotomy can actually be seen as a committee of committees of decision trees that can deal with a multi-class problem with high accuracy. The ten classes of activities that we distinguish in this paper are 'Sitting', 'Standing', 'Walking', 'Running', 'Walking Uphill', 'Walking Downhill', 'Running Uphill', 'Running Downhill', 'Falling', and 'Hobbling'. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window of the last 2 seconds, etc. For experiments to compare the performance of END with those of other methods, the accelerometer data has been collected at every 0.1 second for 2 minutes for each activity from 5 volunteers. Among these 5,900 ($=5{\times}(60{\times}2-2)/0.1$) data collected for each activity (the data for the first 2 seconds are trashed because they do not have time window data), 4,700 have been used for training and the rest for testing. Although 'Walking Uphill' is often confused with some other similar activities, END has been found to classify all of the ten activities with a fairly high accuracy of 98.4%. On the other hand, the accuracies achieved by a decision tree, a k-nearest neighbor, and a one-versus-rest support vector machine have been observed as 97.6%, 96.5%, and 97.6%, respectively.

Energy expenditure measurement of various physical activity and correlation analysis of body weight and energy expenditure in elementary school children (일부 초등학생의 대표적 신체활동의 에너지소비량 측정 및 에너지소비량과 체중과의 상관성 분석)

  • Kim, Jae-Hee;Son, Hee-Ryoung;Choi, Jung-Sook;Kim, Eun-Kyung
    • Journal of Nutrition and Health
    • /
    • 제48권2호
    • /
    • pp.180-191
    • /
    • 2015
  • Purpose: There is a lack of data on the energy cost of children's everyday activities, adult values are often used as surrogates. In addition, the influence of body weight on the energy cost of activity when expressed as metabolic equivalents (METs) has not been vigorously explored. Methods: In this study 20 elementary school students 9~12 years of age completed 18 various physical activities while energy expenditure was measured continuously using a portable telemetry gas exchange system ($K_4b^2$, Cosmed, Rome, Italy). Results: The average age was 10.4 years and the average height and weight was 145.1 cm and 43.6 kg, respectively. Oxygen consumption ($VO_2$), energy expenditure and METs at the time of resting of the subjects were 5.41 mL/kg/min, 1.44 kcal/kg/h, and 1.5 METs, respectively. METs values by 18 physical activities were as follows: Homework and reading books (1.6 METs), playing game with a mobile phone or video while sitting (1.6 METs), watching TV while sitting on a comfortable chair (1.7 METs), playing video game or mobile phone game while standing (1.9 METs), sweeping a room with a broom (2.7 METs) and playing a board game (2.8 METs) belong to light intensity physical activities. By contrary, speedy walking and running were 6.6 and 6.7 METs, respectively, which belong to high intensity physical activities over 6.0 METs. When the effect of body weight on physical activity energy expenditure was determined, $R^2$ values increased with 0.116 (playing a game at sitting), 0.176 (climbing up and down stairs), 0.246 (slow walking), and 0.455 (running), which showed that higher activity intensity increased explanation power of body weight on METs value. Conclusion: This study is important for direct evaluation of energy expenditure by physical activities of children, and it could be used directly for revising and complementing the existing activity classification table to fit for children.