• Title/Summary/Keyword: Power circulation

Search Result 406, Processing Time 0.021 seconds

Analysis on the Qualitative Performance of a Power Split/Circulation Transmission (동력분기/순환구조 동력전달계의 정성적 성능 해석)

  • Lim, W.S.;Lee, D.J.;Lee, J.M.;Park, Y.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.212-223
    • /
    • 1995
  • To improve the efficiency of a power transmission system with slip elements, power split/circulation system is applied. The performance of a power split/circulation system varies widely by the change of the followings; the layout of system, the type and gear ratio of planetary gear, the performance of slip element, etc. Therefore, when one designs such a power transmission system or when one determines the economic/power mode of system, a certain performance prediction method is needed. In this study, the internal power flow pattern of a power split/circulation system is theoretically analyzed on several transmission systems. And an effective performance prediction method(so called performance locus diagram) is presented. By this method, the effects of design factors can be easily understood and the qualitative performances of system can be clearly evaluated.

  • PDF

Research on flow characteristics in supercritical water natural circulation: Influence of heating power distribution

  • Ma, Dongliang;Zhou, Tao;Feng, Xiang;Huang, Yanping
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1079-1087
    • /
    • 2018
  • There are many parameters that affect the natural circulation flow, such as height difference, heating power size, pipe diameter, system pressure and inlet temperature and so on. In general analysis the heating power is often regarded as a uniform distribution. The ANSYS-CFX numerical analysis software was used to analyze the flow heat transfer of supercritical water under different heating power distribution conditions. The distribution types of uniform, power increasing, power decreasing and sine function are investigated. Through the analysis, it can be concluded that different power distribution has a great influence on the flow of natural circulation if the total power of heating is constant. It was found that the peak flow of supercritical water natural circulation is maximal when the distribution of heating power is monotonically decreasing, minimal when it is monotonically increasing, and moderate at uniform or the sine type of heating. The simulation results further reveal the supercritical water under different heat transfer conditions on its flow characteristics. It can provide certain theory reference and system design for passive residual heat removal system about supercritical water.

Compound CVT realizing Power Circulation Mode and Power Split Mode (동력순환형과 동력분류형을 구현 가능한 복합형 무단변속기)

  • Choi Sang-Hoon;Kim Yeon-Su
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.96-103
    • /
    • 2005
  • We designed the compound CVT(Continuously Variable Transmissions) by combining power circulation mode and power split mode, which have been proposed for connecting 2K-H I differential gear to the V- belt type CVU(Continuously Variable Unit), as an input coupled type. With the designed compound CVT, we carried out theoretical analysis and performance experiments for efficiency, speed ratio, power flow, and power transmission ratio. We proved that the compound CVT had a better performance than either of the power circulation mode or power split mode.

Code development on steady-state thermal-hydraulic for small modular natural circulation lead-based fast reactor

  • Zhao, Pengcheng;Liu, Zijing;Yu, Tao;Xie, Jinsen;Chen, Zhenping;Shen, Chong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2789-2802
    • /
    • 2020
  • Small Modular Reactors (SMRs) are attracting wide attention due to their outstanding performance, extensive studies have been carried out for lead-based fast reactors (LFRs) that cooled with Lead or Lead-bismuth (LBE), and small modular natural circulation LFR is one of the promising candidates for SMRs and LFRs development. One of the challenges for the design small modular natural circulation LFR is to master the natural circulation thermal-hydraulic performance in the reactor primary circuit, while the natural circulation characteristics is a coupled thermal-hydraulic problem of the core thermal power, the primary loop layout and the operating state of secondary cooling system etc. Thus, accurate predicting the natural circulation LFRs thermal-hydraulic features are highly required for conducting reactor operating condition evaluate and Thermal hydraulic design optimization. In this study, a thermal-hydraulic analysis code is developed for small modular natural circulation LFRs, which is based on several mathematical models for natural circulation originally. A small modular natural circulation LBE cooled fast reactor named URANUS developed by Korea is chosen to assess the code's capability. Comparisons are performed to demonstrate the accuracy of the code by the calculation results of MARS, and the key thermal-hydraulic parameters agree fairly well with the MARS ones. As a typical application case, steady-state analyses were conducted to have an assessment of thermal-hydraulic behavior under nominal condition, and several parameters affecting natural circulation were evaluated. What's more, two characteristics parameters that used to analyze natural circulation LFRs natural circulation capacity were established. The analyses show that the core thermal power, thermal center difference and flow resistance is the main factors affecting the reactor natural circulation. Improving the core thermal power, increasing the thermal center difference and decreasing the flow resistance can significantly increase the reactor mass flow rate. Characteristics parameters can be used to quickly evaluate the natural circulation capacity of natural circulation LFR under normal operating conditions.

Numerical Analysis on Changes in Flowrate of Draft Water and Power by Changing Design Parameters of a Long-Distance Water Circulation (저층수 흡입식 광역 순환장치의 설계변수에 따른 배출량 및 소비동력 변화 특성에 대한 수치 해석 연구)

  • Song, Dong-Keun;Hong, Won-Seok;Kim, Young-Cheol;Park, Myong-Ha
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • A draft tube which has impeller to elevate bottom water and spread it over surface of lake water, induces convective circulation of lake water, a Long-Distance Circulation (LDC). Circulation of lake water make stratified water mixed and enhance DO (Dissolved Oxygen) of bottom water. Circulation rate of water is determined by draft rate of the tube, which is dependent on design parameters of the draft tube system, i. e. dimension of impeller and diffuser, inclined angle of impeller, impeller shape, and rotational speed. In this study, change in draft rate and power consumption of circulation equipment was investigated numerically with changing impeller dimension, angle and rotational speed. It was found that flowrate of draft water was increased as the dimensions of draft tube and impeller, and rotational speed and inclined angle of impeller increased. The power consumption was also elevated with increasing parameter values, and final selection of parameter values was made to satisfy target flowrates and power consumption.

Boy Power: Soft Power and Political Power in the Circulation of Boys Love (BL) Narratives from South Korea, Thailand, and the Philippines

  • Miguel Antonio N. Lizada
    • SUVANNABHUMI
    • /
    • v.16 no.1
    • /
    • pp.81-101
    • /
    • 2024
  • This paper examines the complexities and creative opportunities brought about by the transnational circulation of texts specifically in the areas of transmission, consumption, and adaptation. The circulation of texts and along with it creative elements such as generic forms, tropes, and frameworks for consumption form an integral part in the production and advancement of any form of popular culture. In the process of such circulation, adaptation becomes a form of social and political process necessary for domestic palatability. In this paper, I examine how these complexities can be illustrated in the circulation of one emerging popular form in East and Southeast Asia: Boys Love (BL) television and web series. Using the transnational movement of the BL genre from South Korea, Thailand, and the Philippines, I examine how the circulation and adaptations are inflected by considerations related to regional geopolitics and domestic issues concerned with the creative praxis of representing gender and sexuality.

Experimental study on vibration projection of seawater circulation pumps in nuclear power plant

  • Lin Bin;Huang Qian;Zhang Rongyong;Zhu Rongsheng;Fu Qiang;Wang Xiuli
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2576-2583
    • /
    • 2024
  • In this paper, the similarity criterion and dimensionless conversion method combined with the elasticity condition and Hooke's law are used to derive the functional relationship of the maximum effective value of the vibration velocity between the prototype pump and the model pump. The seawater circulation pump of a nuclear power plant is used as the prototype pump, and the model pump is obtained by performance conversion and choosing the appropriate scale, and the vibration state of the model pump under different flow rates is measured and analyzed. The vibration data of the model pump through the function relationship to find out the vibration parameters of the prototype model pump, and compare with the vibration data of the seawater circulation pump in reality. It can be seen that with the increase of flow rate, the maximum effective value of the vibration velocity of both model and prototype decreases and then increases, and the relative error is small, the maximum value is 7.7757%. Therefore, it can be considered that the functional relationship of model pump converted to prototype pump derived in this paper can be used to analyze the vibration of the actual seawater circulation pump of coastal nuclear power plant.

Program development and preliminary CHF characteristics analysis for natural circulation loop under moving condition

  • Gui, Minyang;Tian, Wenxi;Wu, Di;Chen, Ronghua;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.446-454
    • /
    • 2021
  • Critical heat flux (CHF) has traditionally been evaluated using look-up tables or empirical correlations for nuclear power plants. However, under complex moving condition, it is necessary to reconsider the CHF characteristics since the conventional CHF prediction methods would no longer be applicable. In this paper, the additional forces caused by motions have been added to the annular film dryout (AFD) mechanistic model to investigate the effect of moving condition on CHF. Moreover, a theoretical model of the natural circulation loop with additional forces is established to reflect the natural circulation characteristics of the loop system. By coupling the system loop with the AFD mechanistic model, a CHF prediction program called NACOM for natural circulation loop under moving condition is developed. The effects of three operating conditions, namely stationary, inclination and rolling, on the CHF of the loop are then analyzed. It can be clearly seen that the moving condition has an adverse effect on the CHF in the natural circulation system. For the calculation parameters in this paper, the CHF can be reduced by 25% compared with the static value, which indicates that it is important to consider the effects of moving condition to retain adequate safety margin in subsequent thermal-hydraulic designs.

Post Test Analysis to Natural Circulation Experiment on the BETHSY Facility Using the MARS 1.4 Code

  • Chung, Young-Jong;Kim, Hee-Cheol;Chang, Moon-Hee
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.638-651
    • /
    • 2001
  • The present study is to assess the applicability of the best-estimate thermal-hydraulic code, MARS 1.4, for the analysis of thermal-hydraulic behavior in PWRs during natural circulation conditions. The code simulates a natural circulation test, BETHSY test 4. la, which was conducted on the integral test facility of BETHSY. The test represented the cooling states of the primary cooling system under single-phase natural circulation, two-phase natural circulation and the reflux condensation mode with conditions corresponding to the residual power, 2% of the rated core power value and 6.8 MPa at the secondary system. Based on MARS 1.4 calculations, the major thermal-hydraulic behaviors during natural circulation are evaluated and the differences between the experimental data and calculated results are identified. The calculated results show generally good behavior with regard to the experimental results; the region of single-phase natural circulation is 100-92% of the initial mass inventory, two-phase natural circulation is 84-63 %, and the reflux condensation mode occurred below 58 %. U-tubes empty and the core uncovery are obtained at 39 % and 34 % of the initial mass inventory, respectively.

  • PDF

Investigation of two-phase natural circulation with the SMART-ITL facility for an integral type reactor

  • Jeon, Byong Guk;Yun, Eunkoo;Bae, Hwang;Yang, Jin-Hwa;Ryu, Sung-Uk;Bang, Yun-Gon;Yi, Sung-Jae;Park, Hyun-Sik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.826-833
    • /
    • 2022
  • A two-phase natural circulation test using SMART integral test loop (SMART-ITL) was conducted to explore thermo-hydraulic phenomena of two-phase natural circulation in the SMART reactor. Specifically, the test examined the natural circulation in the primary loop under a stepwise coolant inventory loss while keeping the core power constant at 5% of the scaled full power. Based on the test results, three flow regimes were observed: single-phase natural circulation (SPNC), two-phase natural circulation (TPNC), and boiler-condenser natural circulation (BCNC). The flow rate remained steady in the SPNC, slightly increased in the TPNC, and dropped abruptly and maintained in the BCNC. Using a natural circulation flow map, the natural circulation characteristic in the SMART-ITL was compared with those in pressurized water reactor simulators. In the SMART-ITL, a BCNC regime appeared instead of siphon condensation and reflux condensation regimes because of the use of once-through steam generators.