• Title/Summary/Keyword: Power amplifiers

Search Result 399, Processing Time 0.026 seconds

High gain and High Efficiency Power Amplifier Using Controlling Gate and Drain Bias Circuit for WPT (무선전력전송용 게이트 및 드레인 조절 회로를 이용한 고이득 고효율 전력증폭기)

  • Lee, Sungje;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.52-56
    • /
    • 2014
  • In this paper, a high-efficiency power amplifier is implemented using a gate and drain bias control circuit for WPT (Wireless Power Transmission). This control circuit has been employed to improve the PAE (Power Added Efficiency). The gate and drain bias control circuits consists of a directional coupler, power detector, and operation amplifier. A high gain two-stage amplifier using a drive amplifier is used for the low input stage of the power amplifier. The proposed power amplifier that uses a gate and drain bias control circuit can have high efficiency at a low and high power level. The PAE has been improved up to 80.5%.

A 2.4 GHz-Band 100 W GaN-HEMT High-Efficiency Power Amplifier for Microwave Heating

  • Nakatani, Keigo;Ishizaki, Toshio
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.82-88
    • /
    • 2015
  • The magnetron, a vacuum tube, is currently the usual high-power microwave power source used for microwave heating. However, the oscillating frequency and output power are unstable and noisy due to the low quality of the high-voltage power supply and low Q of the oscillation circuit. A heating system with enhanced reliability and the capability for control of chemical reactions is desired, because microwave absorption efficiency differs greatly depending on the object being heated. Recent studies on microwave high-efficiency power amplifiers have used harmonic processing techniques, such as class-F and inverse class-F. The present study describes a high-efficiency 100 W GaN-HEMT amplifier that uses a harmonic processing technique that shapes the current and voltage waveforms to improve efficiency. The fabricated GaN power amplifier obtained an output power of 50.4 dBm, a drain efficiency of 72.9%, and a power added efficiency (PAE) of 64.0% at 2.45 GHz for continuous wave operation. A prototype microwave heating system was also developed using this GaN power amplifier. Microwaves totaling 400 W are fed from patch antennas mounted on the top and bottom of the microwave chamber. Preliminary heating experiments with this system have just been initiated.

Class E Power Amplifiers using High-Q Inductors for Loosely Coupled Wireless Power Transfer System

  • Yang, Jong-Ryul;Kim, Jinwook;Park, Young-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.569-575
    • /
    • 2014
  • A highly efficient class E power amplifier is demonstrated for application to wireless power transfer system. The amplifier is designed with an L-type matching at the output for harmonic rejection and output matching. The power loss and the effect of each component in the amplifier with the matching circuit are analyzed with the current ratio transmitted to the output load. Inductors with a quality factor of more than 120 are used in a dc feed and the matching circuit to improve transmission efficiency. The single-ended amplifier with 20 V supply voltage shows 7.7 W output power and 90.8% power added efficiency at 6.78 MHz. The wireless power transfer (WPT) system with the amplifier shows 5.4 W transmitted power and 82.3% overall efficiency. The analysis and measurements show that high-Q inductors are required for the amplifier design to realize highly efficient WPT system.

Design and Fabrication of High Power Amplifiers for IMT-2000 (IMT-2000용 기지국용 대전력 증폭기의 설계 및 제작)

  • 이재윤;정성찬;박천석
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.321-324
    • /
    • 2000
  • 본 논문은 전력증폭기 정합회로 설계시 주어진 임피던스를 가지고 Ansoft사의 Ensemble을 이용해 기본적인 정합회로를 설계하였다. MHL21336 , MRF21030 ,MRF21125로 대전력 증폭기를 설계 및 제작하여 측정해본 결과 전체 이득이 52㏈, 대역폭 안에서 이득 평탄도는 ±0.37㏈ 정도, 출력이 PEP 5l㏈m에서 -30㏈c의 결과를 얻었다. Bias 전류에 대한 5㎒ Tone-space IMD 특성곡선을 측정해 본 결과 기지국용 대전력 증폭기로 사용할 수 있음을 보였다.

  • PDF

Design of class D Amplifier circuits for PA system (PA 시스템을 이용한 D급 증폭회로의 설계)

  • Lee, Jong-Kyu
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.400-403
    • /
    • 2007
  • This research describes how the class D amplifiers with power efficiency are designed and implemented for the PA audio systems. The configuration that makes use of the class D amplifier properties depends strongly on their applications. Thus in this paper the characteristics of the 2-level and 3-level PWM are analysed and the circuit implementation for them is presented. Using the proposed methods, they are designed and simulated for the further investigation. Test(Simulation) results present the improved performance that shows the satisfactory operations in controlling the PWM to the input signals.

  • PDF

Fault Tolerant Control of 6-Pole homopolar Magnetic Bearings (호모폴라형 6극 자기베어링의 고장강건 제어)

  • 나언주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.826-830
    • /
    • 2004
  • Fault tolerant control method for 6-pole homopolar magnetic bearings are presented. If some of the coils or power amplifiers suddenly fail, the remaining coil currents change via a novel distribution matrix such that the same magnetic forces are maintained before and after failure. Lagrange multiplier optimization with equality constraints is utilized to calculate the optimal distribution matrix that maximizes the load capacity of the failed bearing. Some numerical examples of distribution matrices are provided to illustrate this control method.

  • PDF

Design of mulimeter-wave ultra-compact broadband MMIC amplifiers (밀리미터파 초소형 광대역 MMIC 증폭기 설계에 관한 연구)

  • 권영우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1733-1739
    • /
    • 1997
  • An ultra-compact milimeter-wave broadband MMIC amplifier was designed using a direct-coupled topology combined with optimum feedback design. Significant reductionin the chip size was possible by employing the direct-coupled topology. Bias resistors required for the direct-coupled topology were also used as feedback elements. Feedback was optimized for millimeter-wave frequencies using reactive elements. The fabricated MMIC amplifier was realized in a chip size of 0.8mm$^{[-992]}$ and showed gains higher than 8 dB from 12 to 44 GHz. An output power of 30mW was achieved at 44 GHz with a drain efficiency of 10%.

  • PDF

Structural dependence of an optical gain in a traveling-wave semiconductor optical amplifier (진행파형 반도체 광증폭기에서 이득특성의 활성층 구조 의존성)

  • 장세윤;심종인;이정석;김호인;윤인국;김승우;신현철;어영선
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.222-223
    • /
    • 2003
  • The optical gain characteristics of 1550nm traveling-wave semiconductor optical amplifiers are analyzed experimentally and theoretically. The result shows that there is an optimum active layer thickness for high saturation output power.

  • PDF

Multichannel Photoreceiver Arrays for Parallel Optical Interconnects (병렬식 광 인터컨넥트용 멀티채널 수신기 어레이)

  • Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.7 s.337
    • /
    • pp.1-4
    • /
    • 2005
  • A four-channel photoreceiver ways have been realized in a 0.8$\mu$m Si/SiGe HBT technology for the applications of parallel optical interconnects. The receiver array includes four-channel transimpedance amplifiers (TIAs) and p-i-n photodiodes, where the TIAs exploit a common-emitter (CE) input configuration. Measured results demonstrate that the four-channel CE TIA array provides 3.9GHz bandwidth, 62dB$\Omega$ transimpedance gain, 7.5pA/sqrt(Hz) average noise current spectral density, and less than -25dB crosstalk between adjacent channels with 40mW power dissipation.