• 제목/요약/키워드: Power Usage Prediction

검색결과 41건 처리시간 0.022초

배터리 사용량 예측 모델 기반 3차원 UAV 경로 최적화 (3-Dimensional UAV Path Optimization Based on Battery Usage Prediction Model)

  • 강태영;김승훈;박경인;유창경
    • 한국항공우주학회지
    • /
    • 제49권12호
    • /
    • pp.989-996
    • /
    • 2021
  • 배터리를 동력원으로 사용하는 무인항공기의 경우 배터리 용량이 한정적이기 때문에 임무 수행에 제약이 발생할 수 있다. 이를 최소화하기 위해 임무 지역으로 이동하는 동안 소모되는 배터리를 최소화 하는 것이 중요하다. 또한 임무 계획 단계에서 배터리 소모량 예측 모델을 이용하여 임무 수행 가능성을 사전에 판단할 수 있으며 복귀 시점 선정에 기준이 될 수 있다. 본 논문에서는 3차원 공간에서 환경 요소를 반영한 배터리 사용량 예측 모델을 제안한다. 무인항공기의 비행 기하 관계에 따라 요구 동력을 산출하고 이를 통해 배터리 사용량을 예측하였으며 기존에 제안된 배터리 사용량 예측 기법과 비교를 통해 검증한다. 또한 이를 목적함수로 하여 배터리 사용량을 최소화 하는 비행경로를 생성하고 최단 거리를 목적함수로 하였을 때의 결과와 비교하였다.

에너지 효율 증대를 위한 에너지 사용량 예측과 에너지 수요이전 모델 연구 (A Study on the Energy Usage Prediction and Energy Demand Shift Model to Increase Energy Efficiency)

  • 김재환;양세모;이강윤
    • 인터넷정보학회논문지
    • /
    • 제24권2호
    • /
    • pp.57-66
    • /
    • 2023
  • 현재, 에너지 효율 향상으로 소비감축을 시행하는 새로운 에너지 시스템이 대두되고 있다. 이에 스마트그리드가 확산되면서 계시별 요금제가 확대되고 있다. 계시별 요금제는 계절별 / 시간별로 요금을 다르게 적용해 사용량에 따라 요금을 내는 요금제이다. 본 연구에서는 에너지 전력 사용량 데이터를 예측하기 위해, 온도/요일/시간/계절 등 외부 요인을 고려하고 시계열 예측 모델인 LSTM을 활용한다. 이러한 에너지 사용량 예측 모델을 기반으로 기기별 사용패턴을 분석하여 전력 에너지를 최대부하시간대에서 경부하시간대로 수요이전 함으로써 에너지 사용요금을 절감한다. 기기별 사용패턴을 분석하기 위해서는 시간대별로 기기의 사용량 패턴을 학습 및 분류하는 clustering 기법을 사용한다. 정리하자면, 본 연구에서는 사용자의 전력 데이터 사용량을 기반으로 사용량과 사용 요금을 예측 및 기기별 사용패턴을 분석하고 분석 기반의 맞춤형 수요이전 서비스를 제공함으로써 사용자에게 요금 절감 효과를 가져다 준다.

Spectrum Usage Forecasting Model for Cognitive Radio Networks

  • Yang, Wei;Jing, Xiaojun;Huang, Hai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1489-1503
    • /
    • 2018
  • Spectrum reuse has attracted much concern of researchers and scientists, however, the dynamic spectrum access is challenging, since an individual secondary user usually just has limited sensing abilities. One key insight is that spectrum usage forecasting among secondary users, this inspiration enables users to obtain more informed spectrum opportunities. Therefore, spectrum usage forecasting is vital to cognitive radio networks (CRNs). With this insight, a spectrum usage forecasting model for the occurrence of primary users prediction is derived in this paper. The proposed model is based on auto regressive enhanced primary user emergence reasoning (AR-PUER), which combines linear prediction and primary user emergence reasoning. Historical samples are selected to train the spectrum usage forecasting model in order to capture the current distinction pattern of primary users. The proposed scheme does not require the knowledge of signal or of noise power. To verify the performance of proposed spectrum usage forecasting model, we apply it to the data during the past two months, and then compare it with some other sensing techniques. The simulation results demonstrate that the spectrum usage forecasting model is effective and generates the most accurate prediction of primary users occasion in several cases.

Optimal Relocating of Compensators for Real-Reactive Power Management in Distributed Systems

  • Chintam, Jagadeeswar Reddy;Geetha, V.;Mary, D.
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2145-2157
    • /
    • 2018
  • Congestion Management (CM) is an attractive research area in the electrical power transmission with the power compensation abilities. Reconfiguration and the Flexible Alternating Current Transmission Systems (FACTS) devices utilization relieve the congestion in transmission lines. The lack of optimal power (real and reactive) usage with the better transfer capability and minimum cost is still challenging issue in the CM. The prediction of suitable place for the energy resources to control the power flow is the major requirement for power handling scenario. This paper proposes the novel optimization principle to select the best location for the energy resources to achieve the real-reactive power compensation. The parameters estimation and the selection of values with the best fitness through the Symmetrical Distance Travelling Optimization (SDTO) algorithm establishes the proper controlling of optimal power flow in the transmission lines. The modified fitness function formulation based on the bus parameters, index estimation correspond to the optimal reactive power usage enhances the power transfer capability with the minimum cost. The comparative analysis between the proposed method with the existing power management techniques regarding the parameters of power loss, cost value, load power and energy loss confirms the effectiveness of proposed work in the distributed renewable energy systems.

가구당 기기별 에너지 사용량 예측을 위한 딥러닝 모델의 설계 및 구현 (Design and Implementation of Deep Learning Models for Predicting Energy Usage by Device per Household)

  • 이주희;이강윤
    • 한국빅데이터학회지
    • /
    • 제6권1호
    • /
    • pp.127-132
    • /
    • 2021
  • 우리나라는 자원 빈국인 동시에 에너지 다소비 국가이다. 또한 전기 에너지에 대한 사용량 및 의존도가 매우 높고, 총 에너지 사용의 20% 이상은 건물에서 소비된다. 딥러닝과 머신러닝에 대한 연구가 활발해지면서 다양한 알고리즘을 에너지 효율 분야에 적용하려는 연구가 진행되고 있으며, 에너지의 효율적인 관리를 위한 건물에너지관리시스템(BEMS)의 도입이 늘어가는 추세이다. 본 논문에서는 스마트플러그를 이용하여 직접 수집한 가구당 기기별 에너지 사용량을 바탕으로 데이터베이스를 구축하였다. 또한 RNN과 LSTM 모델을 이용하여 수집한 데이터를 효과적으로 분석 및 예측하는 알고리즘을 구현하였다. 추후 이 데이터는 에너지 사용량 예측을 넘어 전력 소비 패턴 분석 등에 적용할 수 있다. 이는 에너지 효율 개선에 도움이 될 수 있으며, 미래 데이터의 예측을 통해 효과적인 전력 사용량 관리에 도움을 줄 것으로 기대된다.

보일러 고온요소의 수명 감시시스템 소프트웨어 개발 (Development of On-line Life Monitoring System Software for High-temperature Components of Power Boilers)

  • 윤필기;정동관;윤기봉
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1999년도 춘계 학술발표회 논문집
    • /
    • pp.171-176
    • /
    • 1999
  • Nondestructive inspection and accompanying life analysis based on fracture mechanics were the major conventional methods for evaluating remaining life of critical high temperature components in power plants. By using these conventional methods, it has been difficult to perform in-service inspection for life prediction. Also, quantitative damage evaluation due to unexpected abrupt changes in operating temperature was almost impossible. Thus, many efforts have been made for evaluating remaining life during operation of the plants and predicting real-time life usage values based on the shape of structures, operating history, and material properties. In this study, a core software for on-line life monitoring system which carries out real-time life evaluation of a critical component in power boiler(high temperature steam headers) is developed. The software is capable of evaluating creep and fatigue life usage from the real-time stress data calculated by using temperature/stress transfer Green functions derived for the specific headers and by counting transient cycles. The major benefits of the developed software lie in determining future operating schedule, inspection interval, and replacement plan by monitoring real-time life usage based on prior operating history.

  • PDF

엘만 순환 신경망을 사용한 전력 에너지 시계열의 예측 및 분석 (The Prediction and Analysis of the Power Energy Time Series by Using the Elman Recurrent Neural Network)

  • 이창용;김진호
    • 산업경영시스템학회지
    • /
    • 제41권1호
    • /
    • pp.84-93
    • /
    • 2018
  • In this paper, we propose an Elman recurrent neural network to predict and analyze a time series of power energy consumption. To this end, we consider the volatility of the time series and apply the sample variance and the detrended fluctuation analyses to the volatilities. We demonstrate that there exists a correlation in the time series of the volatilities, which suggests that the power consumption time series contain a non-negligible amount of the non-linear correlation. Based on this finding, we adopt the Elman recurrent neural network as the model for the prediction of the power consumption. As the simplest form of the recurrent network, the Elman network is designed to learn sequential or time-varying pattern and could predict learned series of values. The Elman network has a layer of "context units" in addition to a standard feedforward network. By adjusting two parameters in the model and performing the cross validation, we demonstrated that the proposed model predicts the power consumption with the relative errors and the average errors in the range of 2%~5% and 3kWh~8kWh, respectively. To further confirm the experimental results, we performed two types of the cross validations designed for the time series data. We also support the validity of the model by analyzing the multi-step forecasting. We found that the prediction errors tend to be saturated although they increase as the prediction time step increases. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric and the gas energies.

변압기 용량 지수를 이용한 수용률 산정 시뮬레이터 개발에 관한 연구 (Study on Simulator for computing Demand Rate using Index of Transformer's Demand Rate)

  • 김영일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.97-100
    • /
    • 2007
  • There are regulations on each building for its classification and It is corresponding determined contract demand. For transformer's capability calculation algorithm, cumulated power information of each customer is used to analysis the correlation between power usage and Demand Rate. By modeling this using Least Square Method, it can be targeted to recognize the pattern of transformer use in the past and make a prediction on it in the future.

  • PDF

공장 전력 절감을 위한 인공지능 기반의 에너지 관리 시스템 개발 (Development of an AI-Based Energy Management System for Factory Power Saving)

  • 누머너브 일리요스벡 라크힘전 우글리;펑보;리 얜시아;율다셰프 이자틸로;이태오;김태국
    • 사물인터넷융복합논문지
    • /
    • 제10권6호
    • /
    • pp.49-55
    • /
    • 2024
  • 본 연구는 IoT 센싱 기술을 활용하여 구축된 빅데이터 수집 시스템을 통해 제주삼다수 공장에서 생성된 데이터를 활용하여 피크 전력 사용을 예측하는 인공지능 모델을 개발하고 비교 분석하였다. LSTM(Long Short-Term Memory) 모델은 단일 변수 시계열 데이터에서 R2=0.98, RMSE=0.039, MAE=0.026으로 가장 높은 예측 정확도를 기록하였으며, XGBoost(eXtreme Gradient Boosting) 모델은 다변량 데이터를 효과적으로 처리하며 R2=0.93, RMSE=0.018, MAE=0.013의 성능을 보였다. 연구 과정에서 다양한 데이터 전처리 방법과 특징 조합을 실험적으로 적용하여 모델의 성능을 최적화하였으며, 이를 통해 데이터 전처리와 변수 선택이 예측 정확도에 미치는 영향을 입증하였다. 연구 결과, 최적화된 인공지능 모델을 활용한 피크 전력 예측은 전력 비용 절감과 약 10~15%의 탄소 배출 감소 효과를 달성할 수 있음을 제시하였다. 이는 ESG(환경, 사회, 지배구조) 경영을 목표로 하는 기업들에게 지속 가능성을 실현하기 위한 실질적이고 구체적인 전략을 제공하며, 제조업, 물류, 스마트 팩토리 등 다양한 산업 분야에서 예측 모델의 적용 가능성을 확인하였다.

하이브리드 애드 혹 네트워크에서의 에너지 예측모델을 이용한 라우팅 알고리즘 (Routing Protocol for Hybrid Ad Hoc Network using Energy Prediction Model)

  • 김태경
    • 인터넷정보학회논문지
    • /
    • 제9권5호
    • /
    • pp.165-173
    • /
    • 2008
  • 하이브리드 애드 혹 네트워크는 통합 네트워크로서 홈 네트워크, 텔레매틱스, 센서 네트워크 등에서 다양한 종류의 서비스를 제공할 수 있다. 특히 애드 혹 네트워크의 각 노드는 이웃 노드들에 데이터를 전송해야 하므로, 전체 에너지의 사용량을 줄이면서, 균형적으로 에너지를 사용하게 해야 한다. 균형적으로 에너지를 사용하지 않으면 부하가 걸린 노드에서 빠른 시간 내에 노드 전송 실패가 나타날 수 있으며, 이는 네트워크 분할 및 네트워크의 기능제공 시간이 단축되는 것을 의미한다. 그러므로 본 논문에서는 에너지의 효율성을 고려한 라우팅 알고리즘에 관한 연구를 수행하였다. 제안한 알고리즘에서는 예측모델을 이용해 각 노드의 에너지의 잔량을 예측하므로, 라우팅 경로의 설정시 에너지 정보를 얻기 위한 많은 부하를 감소시킬 수 있으며, 전체 노드에 걸쳐 에너지의 사용을 균형적으로 사용하게 할 수 있다. 이에 따라 에너지의 손실의 감소 및 네트워크의 가용시간을 연장할 수 있다

  • PDF