• Title/Summary/Keyword: Power Tool

Search Result 1,859, Processing Time 0.03 seconds

An Estimation of Tool Failure by Means of AE Signal and Surface Roughess in Turning Machining (선삭가공에 있어서 AE 신호와 표면 거칠기에 의한 공구손상에 대한 평가)

  • Han, Eung-Gyo;Lee, Beom-Seong;Park, Jun-Seo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.72-77
    • /
    • 1992
  • In this study, using in-process tool failure detecting system by AE method in turning machining, we measured AE signal from the tool, and the surface roughness of workpiece and then compared it with tool wear. As a result, we found that tool failure can be predicted by means of surface roughness of the workpiece and it can be predicted more precisely by the arithmetical average roughness (Ra) than by the maximum height of irregularities (Rmax) of the workpiece. Also, we found that we could judge whether it was sudden failure or the wear by means of the shape of AE signal and the range distri- bution of power spectrum frequency when tool danage was happened.

  • PDF

A Study on the Cutting Characteristics of Glass Fiber Reinforced Plastics by Tool Materials and Type (유리섬유강화 플라스틱의 공구재질 및 형상에 따른 절삭특성에 관한 연구)

  • An, Sang-Ook;Noh, Sang-Lai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1216-1224
    • /
    • 1996
  • In the use of glass fiber reinforced plastics it is often necessary to cutting the components, but the cutting GFRP is often made difficult by the delamination of composites and the short tool life. In this paper, the machinability of GFRP by mean of tool materials and type was experimentally investigated. By proper selection of cutting tool material and type excellent machining of this workpiece is achieved. The surface quality relate closely with the feed rate and cutting tools.

Optimization of Motion Control System on the Machine Tool (공작기계의 이송계 제어 시스템의 최적화)

  • 박인준;곽경남;백형래
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.336-340
    • /
    • 1997
  • This paper is a study about motor technic of motion and feedforward control in order to shape cutting control on the machine tool. The shape error caused by delay of the servo system in the direction of radius at the time of circular cutting is reduced by feedforward control, shape error generated by the position command delay is minimized by using the acceleration/deceleration time constant after the interpolation. The study was verified to optimization of motion control on experiments of a vertical machining center of the machine tool.

  • PDF

The Development of the Interface Tool for the Designing of Motor Drive Using Spice (Motor Drive 설계를 위한 Spice 용 Interface Tool 제작)

  • 이상용;고재석;목형수;최규하;최홍순;김덕근
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.68-72
    • /
    • 1998
  • The parameter through the motor designing program is used to predict motor response and design the motor drive circuits. The application programs such as "Saber" are often used for these. However, making the electrical model of motor for these simulation tool is uncomfortable and impossible for general users. Therefore, in this paper, we develop the "Spice" library generation program with the motor designing program "Motor Expert". This program will assist the user to make the motor library comfortablely and correctlyry comfortablely and correctly

  • PDF

A Study on the Case Hardning Depth of Tool Steel by YAG LASER (YAG 레이저에 의한 공구강의 표면경화 깊이에 관한 연구)

  • 옥철호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.53-58
    • /
    • 1998
  • Case hardening of tool steel(SK5) was investigated after YAG laser irradiation. In the case of beam passes, martensite formed in the melt zone and in former pearlite regions of the austenization zone exhibited very high Vickers Hardness values. The molten depth and radius, micro structure, hardness were investigated as a function of defocusing distance, pulse width, and power density.

  • PDF

A numerical tool for thermo-mechanical analysis of multilayer stepped structures

  • Bagnoli, Paolo Emilio;Girardi, Maria;Padovani, Cristina;Pasquinelli, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.757-774
    • /
    • 2013
  • An integrated simulation tool for multilayer stepped pyramidal structures is presented. The tool, based on a semi-analytical mathematical strategy, is able to calculate the temperature distributions and thermal stresses at the interfaces between the layers of such structures. The core of the thermal solver is the analytical simulator for power electronic devices, DJOSER, which has been supplemented with a mechanical solver based on the finite-element method. To this end, a new ele-ment is proposed whose geometry is defined by its mean surface and thickness, just as in a plate. The resulting mechanical model is fully three-dimensional, in the sense that the deformability in the direction orthogonal to the mean surface is taken into account. The dedicated finite element code developed for solving the equilibrium problem of structures made up of two or more superimposed plates subjected to thermal loads is applied to some two-layer samples made of silicon and copper. Comparisons performed with the results of standard finite element analyses using a large number of brick elements reveal the soundness of the strategy employed and the accuracy of the tool developed.

Thermal Characteristic Analysis of Induction Motors for Machine Tool Spindle for Motion Error Prediction (운동오차 예측을 위한 공작기계 스핀들용 유도전동기의 발열량 해석)

  • Seong, Ki-Hyun;Cho, Han-Wook;Hwang, Jooho;Shim, Jongyoub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.141-147
    • /
    • 2015
  • This paper deals with thermal characteristic analysis of induction motors for machine tool spindle for motion error prediction. Firstly, the inverse design of general induction motors for machine tool spindle has been performed by design principles. Characteristics considering VVVF inverter of induction motors were analyzed. Secondary, power loss and thermal characteristics of induction motors analyzed by equivalent thermal resistance model from Motor-CAD S/W. To develop a second-order fitted power-loss distribution model for the constant-torque operating range of the induction motor, we employed the design of experiment and response surface methodology techniques. Finally, the analysis results were experimentally verified, and the validity of the proposed analysis method was confirmed.

An Experimental Study of the Performance Characteristics with Four Different Rotor Blade Shapes on a Small Mixed-Type Turbine

  • Cho Soo-Yong;Cho Tae-Hwan;Choi Sang-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1478-1487
    • /
    • 2005
  • A small mixed-type turbine with a diameter of 19.9 mm has been substituted for a rotational part of pencil-type air tool. Usually, a vane-type rotor is applied to the rotational part of the air tool. However, the vane-type rotor has some problems, such as friction, abrasion, and necessity of accurate assembly etc.,. These problems make the life time of the vane-type air tool short, but air tools operated by mixed-type turbines are free of friction and abrasion because the turbine rotor dose not contact with the casing. Moreover, it is assembled easily because of no axis offset. These characteristics are merits for using air tools, but loss of power is inevitable on a non-contacting type rotor due to flow loss, tip clearance loss, and profile loss etc.,. In this study, four different rotors are tested, and their characteristics are investigated by measuring the specific output power. Additionally, optimum nozzle location against the rotor is studied. Output powers are obtained through measured pressure, temperature, torque, rotational speed, and flow rate. The experimental results obtained with four different rotors show that the rotor blade shape greatly influences to the performance, and the optimum nozzle location exists near the mid span of the rotor.

Performance Evaluation according to Optical Power of Laser Diode of Optical Fiber Displacement Sensor for Monitoring High Speed Spindle. (고속주축 모니터링용 광파이버 변위센서의 레이저 다이오드 출력에 따른 성능평가)

  • 박찬규;신우철;홍준희;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.376-380
    • /
    • 2004
  • This paper is to develop an optical ruer displacement sensor for monitoring high speed spindle. Proper magnitude of optical power as well as amplification of output signal are necessary to improve sensitivity of the sensor. In this paper, to meet the need of improvement of the sensor resolution, we choose proper optical power and amplification level through speculating on optical power of a laser diode.

  • PDF

Characteristics of Laser Aided Direct Metal Deposition Process for Tool Steel (공구강을 이용한 레이저 직접 금속조형 공정의 적층 특성)

  • 장윤상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.327-330
    • /
    • 2004
  • Laser aided direct metal deposition (LADMD) process offers the ability to make a metal component directly from 3-D CAD dimensions. A 3-D object can be formed by repeating laser cladding layer by layer. The key of the build-up mechanism is the effective control of powder delivery and laser power to be irradiated into the melt-pool. A feedback control system using optical sensors is introduced to control laser power and powder mass flow rate. Using H13 tool steel and $CO_2$ laser system, comprehensive analysis are executed to test the efficiency of the system. In addition, the dimensional characteristics of directed deposited material are investigated with the parameters of deposition thickness, laser power, traverse speed and powder mass flow rate.

  • PDF