• Title/Summary/Keyword: Power System Stabilization

Search Result 267, Processing Time 0.029 seconds

Assessment of performance for Output Power Control of Wind Turbine using Energy Storage System (에너지저장장치를 이용한 풍력발전 출력 제어 성능 평가)

  • Hong, Jong-Seok;Choi, Chang-Ho;Lee, Joo-Yeon;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.254-259
    • /
    • 2014
  • In this paper, we describe construction of a wind stabilization demo-site and effects of output power control of wind turbines for suppression of ramp rate using ESS (Energy Storage System). It is difficult to control the output power of distributed generator such as wind turbine which of variation is very large. If the large capacity wind farm be interconnected into power system may cause blackout due to Power Quality. For these reasons, the international standards such as Grid-Code is limited to less than 10 [%/min] of renewable energy ramp rate. The case of Korea, government actively conducts propagating large-scale renewable energy for green growth policy, to interconnecting more renewable energy into power system is necessary for stabilization technology. For these reasons, the POSCO consortium has constructed a wind stabilization demo-site that is configured as 500 [kWh] battery energy storage systems can output up to 3 [C-Rate] and two wind turbines rated 750 [kW]. In POSCO consortium, which implements various methods stabilizing output power of wind turbine such as smoothing, section firming and ramp control, we derive the results of long-term demonstration that can be controlled to satisfy to the international standard about ramp rate [%/kW] of wind turbine output power.

Power System Stabilization using Self Tuning Fuzzy Controller (자기조정 퍼지제어기에 의한 전력계통 안정화에 관한 연구)

  • Chung, H.H.;Chung, D.I.;Joo, S.M.;Koh, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.48-50
    • /
    • 1994
  • In this paper, the optimal fuzzy controller of exciter and governor in synchronous generator improve the stability of power system with varying loads and disturbances in power system. Parameters of the proposed fuzzy controller were optimally self-tuned by the steepest descent method and were applied to power system stabilization. The related simulation results show that the proposed control technique are more powerful than the conventional ones for reductions of undershoot and for minimization of settling time.

  • PDF

Power Stabilization Catenary line ESS of KTX High Speed Train (KTX 고속전철 급전선로의 ESS를 통한 전원안정화)

  • Pyo, Se-Wan;Lee, Eun-Kyu;Kim, Sang-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2021-2030
    • /
    • 2011
  • This thesis paper is on the management of Energy Storage System for the catenary source stabilization of KTX's high-speed train section. It is the algorism that is to utilize on the voltage drop at the end and peak power suppression of the substation by supplying from the end, compensating consuming energy when the KTX retrogresses, by installing Energy Storage System at the end of the substation where is the section post. The algorism which this thesis is to utilize is verified through the catenary voltage modeling and simulation of the power conversion system, and the system validity of the Korail's Yongjeong section post which is currently in management is in the application review phase.

  • PDF

A Study on digital Controller for Power System Stabilization (전력 계통 안정화 제어를 위한 이산시간 제어기 설계)

  • Park, Young-Moon;Hyun, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.135-137
    • /
    • 1992
  • A new algorithm for self-tuning digital controller is proposed. The system to be controlled is identified on line in auto-regressive-moving-average(ARMA) form via recursive least mean square method. The control law is obtained from the minimization of an objective function. The proposed objective function is similar to that of Generalized Minimum Variance(GMV) method but modified to lessen the overshoot and to avoid numerical divergence problem. This algorithm is applied to the power system stabilization and the comparison of the proposed method with a conventional power system stabilizer(PSS) is presented.

  • PDF

Stabilization of Fixed Speed Wind Generator by using Variable Speed PM Wind Generator in Multi-Machine Power System

  • Rosyadi, Marwan;Takahashi, Rion;Muyeen, S.M.;Tamura, Junji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.111-119
    • /
    • 2013
  • This paper present stabilization control of fixed speed wind generator by using variable speed permanent magnet wind generator in a wind farm connected with multi-machine power system. A novel direct-current based d-q vector control technique of back to back converter integrated with Fuzzy Logic Controller for optimal control configuration is proposed, in which both active and reactive powers delivered to a power grid system are controlled effectively. Simulation analyses have been performed using PSCAD/EMTDC. Simulation results show that the proposed control scheme is very effective to enhance the voltage stability of the wind farm during fault condition.

A Study on the Design and Control Characteristics for Optimum Operation of the PV System-based ESS (PV System 기반 ESS의 최적운전을 위한 설계 및 제어 특성에 관한 연구)

  • Cha, Insu;Park, Jongbok;Jung, Gyeonghwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.19-30
    • /
    • 2016
  • In this study, realize voltage regulation $220Vac{\pm}10%$ or less, frequency fluctuation $60Hz{\pm}1%$ or less over the independent operation and grid-connected operation technologies for power stabilization relates to the ESS designed and manufactured in conjunction with solar installations and solar to compensate the output reduction due to the polarization of the solar module through the polarization prevention technology for preventing the optical module efficiency is lowered, in conjunction with the BMS inverter efficiency was more than 92%, more than 90% of the charging efficiency to the target. This study was designed in conjunction with the ESS solar power plants, grid-connected operation and independent operation, Peak-Cut, it can stabilize the grid via the Peak-Shifting operation

Generalization modeling and verify for low-orbit satellite regulation converter (저궤도 위성의 정 전압 변압기 일반화 모델링 및 적용)

  • Yun, Seok-Teak
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.136-140
    • /
    • 2011
  • Satellites industry has been developing with the commercial and military needs. Because power system of satellites is very important to survival operation and hard to test, increasing reliability is very critical. Especially LEO small satellites are very sensitive to power system, effective stabilization control is important. Because of various need of load condition, converter design are complicated. Therefore this paper introduced general modeling of LEO small satellite converter system and analyzed stabilization control design. The performance prediction of LEO small satellites power system is typically critical. Because of verity controller and rectification value, it is hard to computation and test implementation. So, this approach has merit that will reduce cost and make more reliable system. Furthermore, it can be constraint of converter specification and controller design. This paper will examine generation a modeling of LEO small satellites power converting system, and a possible guide line to design reliable controller which optimizing power converters of LEO small satellite.

Stabilization technology of biogas plant applied recovery system (Recovery system 적용을 통한 바이오가스플랜트의 안정화 기술)

  • Jang, Byoungin;Jeoung, Mihwa;Cho, Yoonmi;Jo, Yongil;Park, Kyungho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.102.2-102.2
    • /
    • 2010
  • We are to evaluate the stabilization technology of actual biogas plant facilities, which is operating currently. It describes the traits of the consistent facilities of mesophilic anaerobic digestion using Unison Biogas plant Recovery system(UBR). Also the economical efficiency is examined with the electric power sales earnings and applying the deserted heating by generating electric power, which is generated by operated combined heat and power using biogas produced by mesophilic anaerobic digestion. We have generated the 481,113kw for electric power and 1,376Gcal for thermal energy simultaneously. If these electric power and thermal energy are converted into diesel, we can achieve savings equal to 114,300L, and 152,109L in the quantity of heat. Finally, if CDM, RPS, liquid fertilizer sales business, etc. is activated, the earnings will be expected to improve dramatically and is considered to contribute a drop of the greenhouse gas.

  • PDF

Frequency Stabilization Method for Grid Integration of Large-scale Centralized Wind Farms via VSC-HVDC Technology

  • Peng, Yanjian;Li, Yong;Liu, Fang;Xu, Zhiwei;Cao, Yijia
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.547-557
    • /
    • 2018
  • This work proposes a control method of frequency stabilization for grid integration of large-scale wind farms via the voltage source converter-based high-voltage direct current (VSC-HVDC) technology. First, the topology of grid integration of a large-scale wind farm via the VSC-HVDC link is provided, and simple control strategies for wind turbines, wind farm side VSC (WFVSC), and grid side VSC are presented. Second, a mathematical model between the phase angle of WFVSC and the frequency of the wind farm is established. The control principle of the large-scale wind power integrated system is analyzed in theory in accordance with the mathematical model. Third, frequency and AC voltage controllers of WFVSC are designed based on the mathematical model of the relationships between the phase angle of WFVSC and the frequency of the wind farm, and between the modulation index of WFVSC and the voltage of the wind farm. Corresponding controller structures are established by deriving a transfer function, and an optimization method for selecting the parameters of the frequency controller is presented. Finally, a case study is performed under different operating conditions by using the DIgSILENT/PowerFactory software. Results show that the proposed control method has good performance in the frequency stabilization of the large-scale wind power integrated system via the VSC-HVDC technology.

A Study on Power System Stabilization using the Design of the Fuzzy PID Controller (퍼지 PID제어기틀 이용한 전력계통의 안정화장치에 관한 연구)

  • Chung, Hyeng-Hwan;Chung, Dong-Il;Joo, Seok-Min;Koh, Hee-Seog
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.86-88
    • /
    • 1995
  • This paper presents a design technique of the fuzzy PID controller for power system stabilization. PID parameters of the fuzzy PID controller was self-tuned by the fuzzy inference algorithm. The Nosed controller compare with conventional power system stabilizer(PSS) under various of initial value of rotor angle deviation and load condition. The related simulation results show that the Nosed controller was more excellent control characteristics than conventional PSS in transient-state and steady-state response.

  • PDF