• Title/Summary/Keyword: Power System Stabilization

Search Result 268, Processing Time 0.025 seconds

Robust Design and Tolerancing for the Performance Improvement of Stabilized Mirror System under Vehicle Vibration (차량진동에 대한 안정거울장치의 성능향상을 위한 강건설계 및 공차할당)

  • Lee, Chong-Won;Jeong, Ho-Seop;Sohn, Seok-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.859-869
    • /
    • 1997
  • In this paper, the robust design and tolerancing of the stabilized mirror is performed to increase its stabilization performance under vehicle vibration. Based on the sensitivity analysis, the seven important control factors are first identified, and then the optimal as well as robust values in the sense of Taguchi method are obtained. Finally, the tolerances associated with each design variables are determined based on a successive sensitivity analysis of the simulated system response so that the deviation in the response from the target value meets the specification requirements. The proposed tolerancing method features that it is a robust but conservative design method and that the computational effort is much less than the Monte Carlo simulation method.

Mobility Stabilization of a $6\times6$ Robot Vehicle by Suspension Kinematics Reconfiguration (현가장치 기구 재구성에 의한 $6\times6$ 로봇차량의 기동성 안정화)

  • Baek, W.K.;Lee, J.W.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.39-45
    • /
    • 2010
  • The dynamic stability of a robot vehicle can be enhanced by the Force-Angle Stability Margin concept that considers a variety of dynamic effects. To evaluate the robot vehicle stability, a SPI(stability performance index), which is a function of the suspension arm angles, was used. If the SPI has a minimum value, the robot vehicle has maximum stability. The FASM and SPI concepts were incorporated in the mobility simulation by using ADAMS and MATLAB/Simulink. The simulation results using these concepts showed significant improvements of the vehicle stability on rough terrains.

Precise Braking Torque Control for Momentum Flywheels Based on a Singular Perturbation Analysis

  • Zhou, Xinxiu;Su, Dan
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.953-962
    • /
    • 2017
  • Momentum flywheels are widely applied for the generation of small and precise torque for the attitude control and inertial stabilization of satellites and space stations. Due to its inherited system nonlinearity, the tracking performance of the flywheel torque/speed in dynamic/plug braking operations is limited when a conventional controller is employed. To take advantage of the well-separated two-time-scale quantities of a flywheel driving system, the singular perturbation technique is adopted to improve the torque tracking performance. In addition, the composite control law, which combines slow- and fast- dynamic portions, is derived for flywheel driving systems. Furthermore, a novel control strategy for plug braking dynamics, which considers couplings between the Buck converter and the three-phase inverter load, is designed with easy implementation. Finally, experimental results are presented to demonstrate the correctness of the analysis and the superiority of the proposed methods.

The Improved Characteristics of the Stand-alone PV System by the Independent Battery Control Method (밧데리 개별 제어 방식에 의한 소규모 독립형 태양광 발전 시스템의 특성 개선)

  • 강신영;이양규;김광헌
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.482-489
    • /
    • 2002
  • This paper studies the stand-alone photovoltaic system for the solar lighting lamp. The solar lighting lamp has PV modules, batteries, and charge & discharge system. The charge efficiency is improved for the control of each battery which is divided the charge from the discharge to change the structure of existing solar lighting lamp charge & discharge system. so, the charge and discharge times are reduced of 50% and the depth of discharge control can be controlled in the discharge cut off voltage. It can be effective of the battery use. If a battery is out of order, this system can be executed for a regular period. So we saved the repair cost and developed of system's stabilization. It Is possible to make economical effects to apply for solar lighting lamp used photovoltaic system.

A development of direct load control system for air-conditioner (원격제어 에어컨 개발 보급현황 및 향후전망)

  • Gang, Won-Gu;Kim, Choong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2446-2448
    • /
    • 2001
  • In addition to the stabilization of electricity supply and the quality management of electricity, load balance has been an important strategy for achieving high quality load management. Among many techniques for load management, direct load management has been actively studied and applied for increasing the efficiency of power facility and suppressing peak load. In Korea, the highest peak load is demanded in summer rather than in winter, and almost 50% of the peak load comes from cooling load. Currently, applicable systems are limited to air conditioners that have the cooling capacity less than 2kW. This paper describes the development of remote controlled air conditioners and the result of the field test of the new type air conditioner. The technical specification based on the test will be applied to the new model of the remote controlled air conditioner. The wide distribution of the air conditioners to the public will be helpful to control peak demand due to cooling load in summer time. Financial investment to generating, transmission, distribution facilities will be decreased from flatting the seasonal power load.

  • PDF

A Design of Power System Stabilization of TCSC System for Power system Oscillation Damping (전력 시스템의 동요 억제를 위한 TCSC용 안정화 장치 설계)

  • 정형환;허동렬;왕용필;박희철;이동철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.104-112
    • /
    • 2002
  • In this paper, it is suggested that the selection method of parameter of Power System Stabilizer(PSS) with robustness in low frequency oscillation for Thyristor Controlled Series Capacitor(TCSC) using Geletic Algorithm(GA). A TCSC meddle consists of a stories capacitor and a parallel path with a thyristor valve and a series inductor. Also in in parallel, as is typical with series capacitor applications, is a metal-oxide varistor(MOV) for overvoltage protection. The proposed PSS parameters are optimized using GA in order to maintain optimal operation of TCSC which is expected to be applied in transmission system to achieve a number of benefits under the various operating conditions. In order to verify the robustness of the proposed method, we considered the dynamic response of angular velocity deviation and terminal voltage deviation under a power fluctuation and rotor angle variation.

Energy Storage Application Strategy on DC Electric Railroad System using a Novel Railroad Analysis Algorithm

  • Lee, Han-Sang;Lee, Han-Min;Lee, Chang-Mu;Jang, Gil-Soo;Kim, Gil-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.228-238
    • /
    • 2010
  • There is an increasing interest in research to help overcome the energy crisis that has been focused on energy storage applications in various parts of power systems. Energy storage systems are good at enhancing the reliability or improving the efficiency of a power system by creating a time gap between the generation and the consumption of power. As a contribution to the various applications of storage devices, this paper describes a novel algorithm that determines the power and storage capacity of selected energy storage devices in order to improve upon railroad system efficiency. The algorithm is also demonstrated by means of simulation studies for the Korean railroad lines now in service. A part of this novel algorithm includes the DC railroad powerflow algorithm that considers the mobility of railroad vehicles, which is necessary because the electric railroad system has a distinct distribution system where the location and power of vehicles are not fixed values. In order to derive a more accurate powerflow result, this algorithm has been designed to consider the rail voltage as well as the feeder voltage for calculating the vehicle voltage. By applying the resultant control scheme, the charging or discharging within a specific voltage boundary, energy savings and a substation voltage stabilization using storage devices are achieved at the same time.

Dynamic Simulation of Pump-Storage Power Plants with different variable speed configurations using the Simsen Tool

  • Kruger, Klaus;Koutnik, Jiri
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.334-345
    • /
    • 2009
  • Pumped storage power plants are playing a significant role in the contribution to the stabilization of an electrical grid, above all by stable operation and fast reaction to sudden load respectively frequency changes. Optimized efficiency and smooth running characteristics both in pump and turbine operation, improved stability for synchronization in turbine mode, load control in pump mode operation and also short reaction times may be achieved using adjustable speed power units. Such variable speed power plants are applicable for high variations of head (e.g. important for low head pump-turbine projects). Due to the rapid development of power semiconductors and frequency converter technology, feasible solutions can be provided even for large hydro power units. Suitable control strategies as well as clear design criteria contribute significantly to the optimal usage of the pump turbine and motor-generators. The SIMSEN tool for dynamic simulations has been used for comparative investigations of different configurations regarding the power converter topology, types of semiconductors and types of motor-generators including the coupling to the hydraulic system. A brief overview of the advantages & disadvantages of the different solutions can also be found in this paper. Using this approach, a customized solution minimizing cost and exploiting the maximum usage of the pump-turbine unit can be developed in the planning stage of new and modernization pump storage projects.

Reference Model Updating of Considering Disturbance Characteristics for Fault Diagnosis of Large-scale DC Bus Capacitors (대용량 직류버스 커패시터의 고장진단을 위한 외란특성 반영의 레퍼런스 모델 개선)

  • Lee, Tae-Bong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.213-218
    • /
    • 2017
  • The DC electrolytic capacitor for DC-link of power converter is widely used in various power electronic circuits and system application. Its functions include, DC Bus voltage stabilization, conduction of ripple current due to switching events, voltage smoothing, etc. Unfortunately, DC electrolytic capacitors are some of the weakest components in power electronics converters. Many papers have proposed different algorithms or diagnosis method to determinate the ESR and tan ${\delta}$ capacitance C for fault alarm system of the electrolytic capacitor. However, both ESR vary with frequency and temperature. Accurate knowledge of both parameters at the capacitors operating conditions is essential to achieve the best reference data of fault alarm. According to parameter analysis, the capacitance increases with temperature and the initial ESR decreases. Higher frequencies make the reference ESR with the initial ESRo value to decrease. Analysis results show that the proposed DC Bus electrolytic capacitor reference ESR model setting technique can be applied to advanced reference signal of capacitor diagnosis systems successfully.

An Analysis of Location Marginal Prices Considering Demand Response Resources (수요반응자원을 고려한 지역별 한계가격 해석기법 연구)

  • Kim, Hyun-Houng;Kim, Jin-Ho;Kim, Hyeong-Jung;Shin, Joong-Rin;Park, Jong-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.25-33
    • /
    • 2008
  • This paper presents a new approach of a evaluation of location marginal prices(LMPs) considering demand response resources in the competitive electricity market. The stabilization of the electric power supply and demand balance has been one of the major important activities in electric power industry. Recently, much attention is paid to the demand-side resources which are responsive to incentives or time-varying prices and existing power system planning and operation activities are incorporated with the so-called demand response resources. In this paper, we first present an analytical method for calculation of LMPs considering demand response resources and then break down the LMPs into three components. In this study, we assume that Korean power system consists of two major regions, one which is the metropolitan and the other is non-metropolitan region. In the case study, we have considered several LMPs cases with different use of locational demand response resource and we can obtain a locational signal to demand response resources. Also, the economics of demand response resources are evaluated, compared with the increase of transmission line capacity and of generation capacity.