• Title/Summary/Keyword: Power System Dynamic Stability

Search Result 356, Processing Time 0.037 seconds

The LQG/LTR Dynamic Digital Control System Design for the Nuclear Steam Generator Water Level (증기발생기 디지탈 수위조절 시스템의 LQG / LTR 동적 제어설계)

  • Lee, Yoon-Joon
    • Nuclear Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.730-742
    • /
    • 1995
  • The steam generator feedwater and level control system is designed by two steps of the feedwater control design and the feedback loop controller design. The feedwater sen system is designed by the optimal LQR/LQG approach and then is modified by the LTR method to recover the robustness. The plant characteristics are subject to change with the power variation and these dynamic properties are considered in the design of the feedback controller. All the designs are made in the continuous domain and are digitalized by applying the proper sampling period. The system is simulated for the two cases of power increase and decrease. From the results of simulation, it is found that the controller constants would rather be invariable during the power increase, while for the case of power decrease they should be changed with the power variation to keep the system stability.

  • PDF

Development of the High Power Battery Charging System for Portable Energy Banks (이동식 에너지 뱅크용 대용량 배터리 충전 시스템의 개발)

  • Kim, Soo-Yeon;Kim, Dong-Ok;Lee, Jung-Hwan;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.491-499
    • /
    • 2021
  • Batteries are widely used for energy storage, such as ESS(Energy Storage System), electric vehicles, electric aircraft, and electric powered ships. Among them, a submarine uses a high power battery for an energy storage. When the battery of a submarine is discharged, a diesel generator generates AC power, and then AC/DC power converter change AC power to DC power for charging the battery. Therefore, in order to lower the current capacity of the diesel generator, it is necessary to use an AC/DC converter with a high input power factor. And, a power converter with a large power capacity must have high stability because it can lead to a major accident when a failure occurs. However, the control algorithm using the traditional PI controller is difficult to satisfy stability and dynamic characteristics. In this paper, we design the high power AC/DC converter with high input power factor for battery charging systems. And, we propose a stable control algorithm. The validity of the proposed method is verified through simulation and experiments.

Recursive Design of Nonlinear Disturbance Attenuation Control for STATCOM

  • Liu Feng;Mei Shengwei;Lu Qiang;Goto Masno
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.262-269
    • /
    • 2005
  • In this paper, a nonlinear robust control approach is applied to design a controller for the Static Synchronous Compensator (STATCOM). A robust control dynamic model of STATCOM in a one-machine, infinite-bus system is established with consideration of the torque disturbance acting on the rotating shaft of the generator set and the disturbance to the output voltage of STATCOM. A novel recursive approach is utilized to construct the energy storage function of the system such that the solution to the disturbance attenuation control problem is acquired, which avoids the difficulty involved in solving the Hamilton-Jacobi-Issacs (HJI) inequality. Sequentially, the nonlinear disturbance attenuation control strategy of STATCOM is obtained. Simulation results demonstrate that STATCOM with the proposed controller can more effectively improve the voltage stability, damp the oscillation, and enhance the transient stability of power systems compared to the conventional PI+PSS controller.

An Optimal Parameter Selection of Power System Stabilizer using Immune Algorithm (면역 알고리즘을 이용한 전력 계통 안정화 장치의 최적 파라미터 선정)

  • Jeong, Hyeong-Hwan;Lee, Jeong-Pil;Jeong, Mun-Gyu;Lee, Gwang-U
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.9
    • /
    • pp.433-445
    • /
    • 2000
  • In this paper, optimal tuning problem of power system stabilizer(PSS) using Immune Algorithm(IA) is investigated to improve power system dynamic stability. In proposed method, objective function is represented as antigens. An affinity calculation is embedded within the algorithm for determining the promotion or suppression of antibody. An antibody that most fits the antigen is considered as the solution to PSS tuning problem. The computaton performance by the proposed method is compared with Genetic Algorithm(GA). The porposed PSS using IA has been applied for two sample system, single-machine infinite bus system and multi-machine power system. The performance of the proposed PSS is compared with that of conventional PSS. It is shown that the proposed PSS tuned using immune algorithm is more robust than conventional PSS.

  • PDF

A. Study on Power System Stabilization by using Parameter Optimization (최적 파라미터를 이용한 전력계통 안정화에 관한 연구)

  • Moon, Young-Hyun;Kwak, No-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.179-183
    • /
    • 1989
  • This study presents a methodology to choose the optimal parameter of controller by using the performance index sensitivity. The pro-posed method is to select the controller parameter to have the minimum sensitivity. It is shown that the optimal parameter proves the effectiveness in the dynamic stability of power system.

  • PDF

A Study on Dynamic Stability of HVDC System Type which may be Applied the Jeju AC Network (제주계통에 적용 가능한 유형별 HVDC 시스템의 동적 안정도 연구)

  • Kwon, Young-Hun;Kim, Yong-Hak;Kim, Chan-Ki;Choy, Young-Do
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.270-277
    • /
    • 2008
  • Capacitor Commutated Converter HVDC system is required the small reactive power. It has the advantage of an application to the week grid because the firing angle ${\alpha}$ can be increased to a value well beyond $180^{\circ}$. In this paper, The three HVDC converter arrangements which are the CCC(Capacitor Commutated Converter) and the CSCC(Controlled Series Capacitor Convertor) and Conventional Converter are compared the dynamic character. and it find that the CCC HVDC is operating with more reliability. The simulation was conducted to the PSCAD/EMTDC.

Adaptive Intelligent Control of Nonlinear dynamic system Using Immune Fuzzy Fusion

  • Kim, Dong-Hwa;Park, Jin-Ill
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.146-156
    • /
    • 2003
  • Nonlinear dynamic system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam temperature control system of the thermal power plant. Up to the present time, PID Controllers have been used to operate these systems. However, it is very difficult to achieve an optimal PID gain with no experience, because of the interaction between loops and gain of the PID controller has to be manually tuned by trial and error. This paper suggests control approaches by immune fuzzy for the nonlinear control system inverted pendulum, through computer simulation. This paper defines relationship state variables $x,\dot{x},{\theta},\dot{\theta}$ using immune fuzzy and applied its results to stability.

A Study on the Dynamic Reduction for Large Power System

  • Kim, Jin-Yi;Won, Dong-Jun;Moon, Seung-Il
    • KIEE International Transactions on Power Engineering
    • /
    • v.12A no.1
    • /
    • pp.1-5
    • /
    • 2002
  • This paper presents the procedure to construct equivalent model of large power system based on nonlinear time simulation responses. It consists of coherency identification, generator aggregation and network reduction. Coherency index that can be directly implemented to this procedure is proposed. Generator aggregation based on detailed model is performed. This procedure can be used to construct equivalent model in PSS/E. It is also possible to reduce the large power system directly from the nonlinear time responses. This procedure is applied to the transient stability analysis of Korea power system that now experiences rapid changes. The equivalent model is compared with the original model in its size, accuracy, speed and performance. This paper shows that the developed equivalent model is a good estimate of the original system.

A study on the ATC(Available Transfer Capabilily) calculation using an Energy Function Method (에너지함수법을 이용한 가용송전용량(ATC) 계산에 관한 연구)

  • Kim, Jae-Hyeon;Jeong, Sung-Won;Kim, Yong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.94-100
    • /
    • 2008
  • Available transfer capability(ATC) quantifies the viable increase in real power transfer from one point to another in a power system. ATC calculation has predominantly focussed on steady-state viability. But ATC assessment with transient stability constraints has a dominant part in overall ATC calculation. ATC assessment requires a reputation of (n-1) security assessment with constraints of thermal limits, voltage stability and dynamic stability. An estimation of determinant contingency screening method is used for computing eigenvalue of Jacobian matrix. This paper proposed a methods to ATC calculation using energy function. Constraints is used thermal limits, voltage stability and transient stability.

An Effect of Roof-Fairing and Deflector System on the Reduction of Aerodynamic Drag of a Heavy-Duty Truck (대형트럭용 루프 훼어링과 디프렉트의 공기저항력 저감 특성에 관한 연구)

  • Kim, Chul-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.194-201
    • /
    • 2006
  • Roof-fairing and deflector system have been used on heavy-duty trucks to minimize aerodynamic drag force not only for driving stability of the truck but also for energy saving by reducing the required driving power of the vehicle. In this study, a numerical simulation was carried out to see aerodynamic effect of the drag reducing device on the model vehicle. Drag and lift force generated on the five different models of the drag reducing system were calculated and compared them each other to see which type of device is efficient on the reduction of driving power of the vehicles quantitatively. An experiment has been done to see airflow characteristics on the model vehicles. Airflow patterns around the model vehicles were visualized by smoke generation method to compare the complexity of airflow around drag reducing device. From the results, the deflector systems(Model 5,6) were revealed as a better device for reduction of aerodynamic drag than the roof-fairing systems(Model 2,3,4) on the heavy-duty truck and it can be expected that over 10% of brake power of an engine can be saved on a tractor-trailer by the aerodynamic drag reducing device at normal speed range($80km/h{\sim}$).